• Title/Summary/Keyword: Precision Rotor

Search Result 271, Processing Time 0.03 seconds

An Experimental Study for Machined Patterns of Friction Surface on Disc Brake Rotor in Performance Aspect (디스크 브레이크 로터 마찰면 가공 형태에 따른 성능 변화 연구)

  • Jung, Taeksu;Cha, Bawoo;Hong, Yunhwa;Kim, Cheongmin;Hong, Younghoon;Cho, Chongdu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.471-479
    • /
    • 2016
  • Cross-drilling and slotting on the frictional surface of a brake rotor are methods used for improving the performance of the brake system. These shapes have particular advantages, such as the shaving effect of a slotted shape, which maintains a clean pad-to-rotor contact surface, and the venting effect of a drilled shape, which provides passageways for the gas to escape. In order to understand the effect of the machined pattern on the brake performance aspect, an experimental method is adopted along with the dynamometer test. The cross-drilled rotor, slotted rotor, and mixed pattern rotor with cross-drilling and slotting machining are prepared and tested in terms of friction coefficient, temperature, braking torque, and noise.

Effect of lamination pressing force for stiffness variation of a laminated rotor (적층로터의 강성 변경을 위한 적층판 압착력의 영향)

  • 김영춘;박희주;김경웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.788-792
    • /
    • 2003
  • Rotating machines are widely used in industrial world and especially motor and generator take up much part of it. As for this kind of motor and generator, electrical loss due to eddy current is the very important factor and that is also a primary factor causes heat generation. To solve this kind of problem like the above. insulated laminating silicon steel sheet is used to prevent eddy current effect. Laminated rotor is widely used as rotating shaft of motor and generator. Due to that, electrical loss and heat problem can be solved but designer meets another problem. In general. most of the motor and generator can be normally operated under 3,600 rpm because they are designed to have the first critical speed more than that speed. But nowadays, they should be operated more than the first critical speed as usual with the trend of high speed, large scale and high precision in industrial world. The critical speed can be determined from the inertia and stillness for the rotor and bearing of rotating systems. The laminated rotor stiffness can be hardly determined because it can be derived a lot factors for instance rotor material and shape, lamination material and shape, insulation material. lamination force and so on. In this paper, the change of the natural frequency of the motor was examined with the change of the lamination force as an experimental method and design criteria will be presented for motor & generator designer, who can apply the result of numerical analysis with equivalent diameter scheme with ease.

  • PDF

Three-Dimensional Simulation of a Rotor Pole Forging Process and Verification of the Results (로터 폴 단조 공정의 정밀 삼차원 시뮬레이션 및 결과의 검증)

  • 고병호;이민철;제진수;전만수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.158-162
    • /
    • 2002
  • In this paper, the usefulness of a three-dimensional forging simulation technique is verified through its application to process design in rotor pole forging. A simulator, AFDEX3D developed based on the rigid-plastic finite element method and hexahedral elements, is employed. The simulated results of an application example found in a precision forging company are compared with the actually forged ones in detail. It has been verified that the simulation results are in good agreement with the actual phenomena.

On Cutting Characteristics Change of Low Temperature Cooling Tool(1st Report) - Cutting Characteristics of Cage Motor Rotor - (저온냉각공구의 절삭특성 변화 (제1보) -모터 회전자의 절삭특성)

  • 김순채;김희남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.44-48
    • /
    • 1994
  • The cutting process of cage motor rotor require high precision and good roughness. The surface roughness of cutting face is very important factor with effect on the magnetic flux density of cage motor rotor. The paper describes a cause of decrease in the cutting force and roughness on low temperature cooling tool by means of analysis on the mechanism of force system at cutting confition and experimental findings. The main results as compared with the room temperature cutting are as follow : 1) The cutting resistance decreased due to low temperature cooling tool. 2) The surface roughness decreased due to low temperature cooling tool.

  • PDF

Design and Characteristics Analysis of Outer Rotor Type BLDC Motor (Outer Rotor 방식 BLDC 전동기 설계 및 특성 해석 모델링)

  • Park, Young-Il;Youn, Sun-Ky;Cho, Yun-Hyun;Jang, Woo-Kyo;Lee, Jae-Ho;Shin, Dong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.391-393
    • /
    • 1999
  • This paper is proposed the design method of Outer Rotor BLDC by the magnetic equivalent method. In order to compute and estimate the performance parameter of Outer type BLDC. The dynamic model and characteristics analysis of BLDC is obtained by Matlab.

  • PDF

Development of the Starting Algorithm of a Brushless DC Motor Using the Inductance Variation (인덕턴스의 변화를 이용한 브러시리스 DC 모터의 초기 구동 알고리즘 개발 및 구현)

  • Park, Jae-Hyun;Chang, Jung-Hwan;Jang, Gun-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.157-164
    • /
    • 2000
  • This paper presents a method to detect a rotor position and to drive a BLDC motor from standstill to medium speed without any position sensor comparing the current responses due to the inductance variation in the rotor position. A rotor position at a standstill is identified by the current responses of six pulses injected to each phase of a motor. Once the motor stars up pulse train that is composed of long and short pulses is injected to the phase corresponding to produce the maximum torque and the next phase continuously. it provides not only the torque but also the information of the next commutation time effectively when the response of long and short pulses crosses each other after the same time delay. This method which is verified experimentally using a DSP can drive a BLDC motor to the medium speed smoothly without any rattling and time delay compared with the conventional sensorless algorithm.

  • PDF

Vibration Control of Rotor Using Time Delay Control (시간지연 제어기법을 이용한 회전체 진동제어)

  • Xuan D.J.;Choi W.K.;Shen Y.D.;Kim Y.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1828-1831
    • /
    • 2005
  • Time Delay Control (TDC) method was proposed as a promising technique in the robust control area, where the plants have unknown dynamics with parameter variations and substantial disturbances are present. In this paper we concerns vibration control of rotor system using TDC. Based on the rotor system model, the TDC is designed, and the PD-controller is also designed for comparison. The simulation results show that the TDC is much robust than the PD-controller to the unknown dynamics with parameter variations and disturbances.

  • PDF

Charpy 충격시험편을 이용한 로터강의 인성 열화도 평가

  • 남승훈;김시천;이해무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.728-731
    • /
    • 1995
  • Miniaturzed specimen technology permits mechanical bechanical behavior to be determined using a minimum volume of material. because it is almost impossible to sample the conventional specimen for the fracture toughness test without damage to the rotor. In addition, it is different to collect a large amount of actual turbine rotor steels. Hence seven kinds of specimen with different degradation levels were prepared by isothermal aging heat treatment at 630 .deg. C. Test material was 1Cr-1Mo-0.25V steel which was widely used for turbine rotor material. The relation between fracture toughness and DBTT was investigated The characteristics of minaturized impact speciments technique was discussed. Finally, the estimating method of fracture toughness using a single impact specimen was introduced.

  • PDF

A Study on Dynamic Characteristics of a Rotor-Bearing System Supported by Actively Controlled Hydrodynamic Journal Bearing (능동 제어 베어링으로 지지된 축-베어링 시스템의 동특성에 관한 연구)

  • 노병후;김경웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.635-638
    • /
    • 2001
  • This paper presents the dynamic characteristics of r rotor-bearing system supported by an actively controlled hydrodynamic journal bearing. The proportional, derivative and integral controls are adopted for the control algorithm to control the hydrodynamic journal bearing with an axially groove. Also, the cavitation algorithm implementing the Jakobsson-Floberg-olsson boundery condition is adopted to predict cavitation regions in the fluid film more accurately than conventional analysis, which uses the Reynolds condition. The speed at onset of instability of a rotor-bearing system is increased by both proportional and derivative control of the bearing. The integral control has no effect on stability characteristics of hydrodynamic journal bearing. The PD-control is more effective than proportional or derivative control. Results show the active control of bearing can be adopted for the stability improvement of a rotor-bearing system.

  • PDF

Idetification of Parameter for Bearing Using Sensitivity Analysis Method (민감도 해석 기법을 이용한 베어링 파라미터 규명)

  • 이경백;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.354-357
    • /
    • 2001
  • The developed method is proposed to identify rotor dynamic parameters. The method known imbalance vector, which renders over-determined linear system equation. The solution of the system equation can be obtained using least square method. The sensitivity analysis is performed to extract optimized solution, which is considered to be insensitive to inherent measurement errors. As an alternative approach to identify the parameters of bearings and rotor, adding a known imbalance to the rotor produces another equation set to make the system equations over-determined and linearly independent.

  • PDF