• 제목/요약/키워드: Precision Position Control

검색결과 741건 처리시간 0.02초

신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀 위치제어 (Precision Position Control of PMSM Using Neural Network Disturbance observer and Parameter compensator)

  • 고종선;진달복;이태훈
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권3호
    • /
    • pp.188-195
    • /
    • 2004
  • This paper presents neural load torque observer that is used to deadbeat load torque observer and gain compensation by parameter estimator As a result, the response of the PMSM(permanent magnet synchronous motor) follows that nominal plant. The load torque compensation method is composed of a neural deadbeat observer To reduce the noise effect, the post-filter implemented by MA(moving average) process, is adopted. The parameter compensator with RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller The parameter estimator is combined with a high performance neural load torque observer to resolve the problems. The neural network is trained in on-line phases and it is composed by a feed forward recall and error back-propagation training. During the normal operation, the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. As a result, the proposed control system has a robust and precise system against the load torque and the Parameter variation. A stability and usefulness are verified by computer simulation and experiment.

외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀위치 제어 (Precision Position Control of PMSM using Load Torque Observer and Parameter Compensator)

  • 고종선;이태훈
    • 전력전자학회논문지
    • /
    • 제9권1호
    • /
    • pp.42-49
    • /
    • 2004
  • 본 논문은 데드비트 외란 관측기를 사용한 외부 부하 외란 보상과 파라미터 추정기에 의한 보상 이득의 조정을 나타내고 있다. 결론적으로 PMSM의 응답은 지표 시스템을 따른다. 부하 토크 보상 방법은 데드비트 관측기로 구성된다. 노이즈 영향을 감소시키기 위해 MA 처리에 의해 구현된 후단 필터를 적용하였고, RLSM 파라미터 추정기를 가진 파라미터 보상기가 주어진 실제 시스템의 이득 계산시 사용된 파라미터로 가상 동작하여 이득이 오차가 없는 것처럼 동작하게 한다. 제안된 추정기는 문제를 풀기 위해 고성능 외란 관측기와 조합하여 사용한다. 제안된 제어 시스템은 부하토크와 파라미터 변화에 대해 강인하고 정밀한 시스템이 된다. 이상의 제안된 시스템의 안정성과 유용함이 컴퓨터 시뮬레이션과 실험을 통하여 확인되었다.

Precision Position Control of PMSM using Neural Observer and Parameter Compensator

  • Ko, Jong-Sun;Seo, Young-Ger;Kim, Hyun-Sik
    • Journal of Power Electronics
    • /
    • 제8권4호
    • /
    • pp.354-362
    • /
    • 2008
  • This paper presents neural load torque compensation method which is composed of a deadbeat load torque observer and gains compensation by a parameter estimator. As a result, the response of the PMSM (permanent magnet synchronous motor) obtains better precision position control. To reduce the noise effect, the post-filter is implemented by a MA (moving average) process. The parameter compensator with an RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller. The parameter estimator is combined with a high performance neural load torque observer to resolve problems. The neural network is trained in online phases and it is composed by a feed forward recall and error back-propagation training. During normal operation, the input-output response is sampled and the weighting value is trained multi-times by the error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. As a result, the proposed control system has a robust and precise system against load torque and parameter variation. Stability and usefulness are verified by computer simulation and experiment.

엔드밀 가공에서 2축 절사력 PI 제어를 통한 커터 런아웃 제거에 관한 연구 (Cutter Runout Elimination in End Milling through Two-Axes PI Force Control)

  • 노종호;황준;;정의식
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.83-89
    • /
    • 1999
  • This paper presents the in-process runout compensation methodology to improve the surface quality of circular contouring cut in end milling process. The runout compensation system is based on the manipulation of workpiece position relative to cutter in minimizing the cutting force oscillation at spindle frequency. the basic concept of this approach is realized on a end milling machine whose machining table accommodates a set of orthogonal translators perpendicular to the spindle axis. The system performed that measuring the runout related cutting force component, formulating PI controlling commands, and the manipulating the workpiece position to counteract the variation of chip load during the circular contouring cut. To evaluate the runout compensation system performance, experimental study based on the implementation of two-axes PI force control is presented in the context of cutting force regulation and part surface finish improvement.

  • PDF

용접부 품질향상을 위한 지능형 용접 와이어 공급 장치 개발 (Development of Intelligent Filler Wire Feeding Device for Improvement of Weld quality)

  • 이재석;손영일;박기영;이경돈
    • 한국정밀공학회지
    • /
    • 제23권7호
    • /
    • pp.59-66
    • /
    • 2006
  • In laser welding, automatic seam tracking is important to adjust the laser head position in real time as it moves along the seam. Also if the joint gap is occurred, filling the missing material into the joint gap is necessary to prevent welding defects and bad welding quality. In general, the joint gap width is not constant along the seam due to a variety of reason. So it is essential to control the filler wire speed into the joint gap to acquire good welding quality. This paper describes an intelligent filler wire feeding device which can control 3-dimensional seam tracking and the filler wire speed by measuring the gap position and the joint gap width in laser welding. We call this device as Smart Micro Control system(SMC). To achieve this objective, we assessed weld quality in 2mm sheets of A16061 which had various gap width by using the developed device. From the experimental results, It was found the possibility that the developed device could be used in welding various 3-dimensional structures.

수중운항로봇 플랫폼의 무게중심 조정을 통한 제어성능 향상 (Hovering Performance Improvement by Modifying COG of Underwater Robotic Platform)

  • 박정애;김종원;진상록;김종원;서태원
    • 한국정밀공학회지
    • /
    • 제32권7호
    • /
    • pp.661-666
    • /
    • 2015
  • This paper presents control performance improvement by modifying center of gravity (COG) of an underwater robotic platform. To reduce the oscillation or to increase the positioning accuracy, it is important to accurately know the COG of an underwater robotic platform. The COG is determined by the three measured tilting angles of the platform in different postures. The tilting angle is measured while the platform is hanged by two strings. Using coordinate transformation, the plane of intersection is defined from the angle of the platform and the position of the string. The COG of the robotic platform is directly calculated by the intersected point in three defined planes. The measured COG is implemented to the control algorithm that is pre-designed in the previous research, and the empirical result on tilting gives 48.26% improved oscillation performance comparing to the oscillation result with the ideal COG position.

핀홀형 LED 디스플레이 보드 펀칭 시스템 개발 (Development of a Punching System for Pin-hole Type LED Display Board)

  • 최형식;강진일;허재관;한종석
    • 한국정밀공학회지
    • /
    • 제27권7호
    • /
    • pp.63-70
    • /
    • 2010
  • We developed a new punching system that generates pinholes expressing texts or images on a plastic plate. The pin-holed plate is used as a new glamorous display board reflecting colorful lights from the light emitting diode (LED) installed on the edge side of the plate. The four degree-of-freedom punching system was designed to make same multiple holes on four plastic plates simultaneously. For this motion, we designed a structure for a simultaneous motion of the system. For even reflection of the lights from texts or images on the board and fast production of the pin-holed boards, fast motion including precise position control is very important. We also built a PC-based integrated control system including a GUI program to help users easily design luminous texts or images on the plastic plate. Also, we conducted a performance test of the system to verify the punching speed and position control of the pin holes on the plate.

Real-Time Determination of Relative Position Between Satellites Using Laser Ranging

  • Jung, Shinwon;Park, Sang-Young;Park, Han-Earl;Park, Chan-Deok;Kim, Seung-Woo;Jang, Yoon-Soo
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권4호
    • /
    • pp.351-362
    • /
    • 2012
  • We made a study on real-time determination method for relative position using the laser-measured distance data between satellites. We numerically performed the determination of relative position in accordance with extended Kalman filter algorithm using the vectors obtained through nonlinear equation of relative motion, laser simulator for distance measurement, and attitude determination of chief satellite. Because the spherical parameters of relative distance and direction are used, there occur some changes in precision depending on changes in relative distance when determining the relative position. As a result of simulation, it was possible to determine the relative position with several millimeter-level errors at a distance of 10 km, and sub-millimeter level errors at a distance of 1 km. In addition, we performed the determination of relative position assuming the case that global positioning system data was not received for long hours to see the impact of determination of chief satellite orbit on the determination of relative position. The determination of precise relative position at a long distance carried out in this study can be used for scientific mission using the satellite formation flying.

지터 잡음을 개선한 하이브리드 적응제어기 (Hybrid Adaptive Controller Improving The Jitter Noise)

  • 조정환;홍권의;고성원
    • 조명전기설비학회논문지
    • /
    • 제23권2호
    • /
    • pp.108-114
    • /
    • 2009
  • 데드존이나 비선형성이 존재하는 자동화 시스템의 고속 정밀제어를 위하여 새로운 하이브리드 적응제어 기를 제안한다. 제안된 시스템은 제어영역을 고속제어 영역과 정밀제어 영역으로 구분하여 제어한다. 먼저 퍼지 제어방식을 이용하여 고속제어를 수행하고, 오차가 설정된 범위 안에 진입하면 지터를 저감시킨 PFD를 이용한 PLL 제어기를 사용하여 정밀제어를 수행한다. 제안된 PFD는 데드존을 발생시키지 않아 지터 잡음과 응답특성을 개선하였다. 이론과 실험적인 연구가 수행되었고, 그 결과는 자동화 시스템의 제어 성능이 개선되었음을 입증한다.

압전전압 궤환에 의한 미세구동 연삭테이블의 개발 (A Development of Micro-Positioning Grinding Table using Piezoelectric Voltage Feedback)

  • 남수룡;김정두
    • 한국정밀공학회지
    • /
    • 제12권2호
    • /
    • pp.48-58
    • /
    • 1995
  • A micro positioning system using piezoelectric actuators have very wide application region such as ultra-precision machine tool, optical device, measurement systen. In order ro keep a high precision displacement resolution, they use a position sensor and feedback the error. From the practical point of view, a high-resolution displacement sensor system are very expensive and difficult to guarantee such sensitive sensors work properly in the hard opera- tion environment of industry. In this study, a micro-positioning grinding table which does not require position sensor but uses piezoelectric voltage feedback, has been developed. It is driven by hystersis-considering reference input voltage which calculated from computer and then uses actuator/sensor characteristics of piezoelectric materials. From the result of experiments we proved a fast and stable response of micro-positioning system and suggested efficient technique to control the piezoelectric actuator. And through grinding experiments, it is revealed that a characteristics of ground surfaces transient to plastic deformation as extremely small depth of grinding.

  • PDF