• 제목/요약/키워드: Precision Navigation

검색결과 419건 처리시간 0.028초

국내 GBAS 운용을 위한 시스템 설계 및 제작 승인 기준 개발 (A Development of System Design Approval Criteria for GBAS Operation in Korea)

  • 윤영선;김주경;조정호;남기욱;허문범
    • 한국항행학회논문지
    • /
    • 제17권6호
    • /
    • pp.625-632
    • /
    • 2013
  • GBAS는 항공기들의 착륙을 위한 정밀접근 서비스를 제공하는 항행안전시설이므로 정상 서비스 제공을 위해서는 항행 서비스 제공자 혹은 항공 규제기관으로부터의 승인을 획득하여야 한다. 현재까지 우리나라는 GBAS 시스템에 대한 개발 혹은 운용 경험이 없기 때문에 GBAS에 대한 승인 기준이 마련되어 있지 않은 상태이다. 향후 GBAS 시스템의 도입 및 운용 시의 승인 기준을 개발하기 위하여 한국항공우주연구원에서는 상용 GBAS 시스템인 SLS-4000을 김포 공항에 설치하고 시험을 수행하고 있다. 본 논문에서는 그 중 시스템 설계 및 제작 승인 기준에 대한 개발 내용을 정리한다. 미국, 독일, 호주 등에서 진행된 승인 사례를 조사하여 우리나라 승인기준 작성 방향을 결정하였고 상용 시스템의 FAA 승인 시 제출 문서들을 분석하여 우리나라 설계 및 제작 승인 기준 항목들을 도출하였다. 본 승인 기준은 향후 GBAS 시스템 도입 시 승인 과정에 직접 활용 가능할 뿐 아니라 우리나라 자체 위성항법 기반 항행안전시설 개발 시에도 요구사항 분석, 설계, 개발, 산출물 관리 등에 참고될 수 있을 것으로 기대된다.

MEMS Gyro North Finding 방법을 이용한 실내 이동로봇의 전방향 탐지 (Indoor Mobile Robot Heading Detection Using MEMS Gyro North Finding Approach)

  • 위원룡;이민철;김지언
    • 로봇학회논문지
    • /
    • 제6권4호
    • /
    • pp.334-343
    • /
    • 2011
  • This paper presents a new approach for mobile robot heading detection using MEMS Gyro north finding method in the indoor environment. Based on this, the robot heading angle measurement scheme is proposed; improved north finding theory and algorithm are also explained. Several approaches are applied to confirm system's precision and effectiveness. In order to find out the heading angle, a single axis MEMS gyroscope to sense the angle between the robot heading direction and the north is used. To reach enough estimation accuracy and reduce detection time, the least square method (LSM) for the signal fitting and parameter estimation is applied. Through a turn-table, we setup a carouseling system to decrease the substantial bias effect on gyroscope's heading angle. For the evaluation of the proposed method, this system is implemented to the Pioneer robot platform. The performance and heading error are analyzed after the test. From the simulation and experimental results, system's accuracy, usefulness and adaptability are shown.

Observational Arc-Length Effect on Orbit Determination for Korea Pathfinder Lunar Orbiter in the Earth-Moon Transfer Phase Using a Sequential Estimation

  • Kim, Young-Rok;Song, Young-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • 제36권4호
    • /
    • pp.293-306
    • /
    • 2019
  • In this study, the observational arc-length effect on orbit determination (OD) for the Korea Pathfinder Lunar Orbiter (KPLO) in the Earth-Moon Transfer phase was investigated. For the OD, we employed a sequential estimation using the extended Kalman filter and a fixed-point smoother. The mission periods, comprised between the perigee maneuvers (PM) and the lunar orbit insertion (LOI) maneuver in a 3.5 phasing loop of the KPLO, was the primary target. The total period was divided into three phases: launch-PM1, PM1-PM3, and PM3-LOI. The Doppler and range data obtained from three tracking stations [included in the deep space network (DSN) and Korea Deep Space Antenna (KDSA)] were utilized for the OD. Six arc-length cases (24 hrs, 48 hrs, 60 hrs, 3 days, 4 days, and 5 days) were considered for the arc-length effect investigation. In order to evaluate the OD accuracy, we analyzed the position uncertainties, the precision of orbit overlaps, and the position differences between true and estimated trajectories. The maximum performance of 3-day OD approach was observed in the case of stable flight dynamics operations and robust navigation capability. This study provides a guideline for the flight dynamics operations of the KPLO in the trans-lunar phase.

3D Navigation Real Time RSSI-based Indoor Tracking Application

  • Lee, Boon-Giin;Lee, Young-Sook;Chung, Wan-Young
    • Journal of Ubiquitous Convergence Technology
    • /
    • 제2권2호
    • /
    • pp.67-77
    • /
    • 2008
  • Representation of various types of information in an interactive virtual reality environment on mobile devices had been an attractive and valuable research in this new era. Our main focus is presenting spatial indoor location sensing information in 3D perception in mind to replace the traditional 2D floor map using handheld PDA. Designation of 3D virtual reality by Virtual Reality Modeling Language (VRML) demonstrates its powerful ability in providing lots of useful positioning information for PDA user in real-time situation. Furthermore, by interpolating portal culling algorithm would reduce the 3D graphics rendering time on low power processing PDA significantly. By fully utilizing the CC2420 chipbased sensor nodes, wireless sensor network was established to locate user position based on Received Signal Strength Indication (RSSI) signals. Implementation of RSSI-based indoor tracking method is low-cost solution. However, due to signal diffraction, shadowing and multipath fading, high accuracy of sensing information is unable to obtain even though with sophisticated indoor estimation methods. Therefore, low complexity and flexible accuracy refinement algorithm was proposed to obtain high precision indoor sensing information. User indoor position is updated synchronously in virtual reality to real physical world. Moreover, assignment of magnetic compass could provide dynamic orientation information of user current viewpoint in real-time.

  • PDF

Development of Image-based Assistant Algorithm for Vehicle Positioning by Detecting Road Facilities

  • Jung, Jinwoo;Kwon, Jay Hyoun;Lee, Yong
    • 한국측량학회지
    • /
    • 제35권5호
    • /
    • pp.339-348
    • /
    • 2017
  • Due to recent improvements in computer processing speed and image processing technology, researches are being actively carried out to combine information from a camera with existing GNSS (Global Navigation Satellite System) and dead reckoning. In this study, the mathematical model based on SPR (Single Photo Resection) is derived for image-based assistant algorithm for vehicle positioning. Simulation test is performed to analyze factors affecting SPR. In addition, GNSS/on-board vehicle sensor/image based positioning algorithm is developed by combining image-based positioning algorithm with existing positioning algorithm. The performance of the integrated algorithm is evaluated by the actual driving test and landmark's position data, which is required to perform SPR, based on simulation. The precision of the horizontal position error is 1.79m in the case of the existing positioning algorithm, and that of the integrated positioning algorithm is 0.12m at the points where SPR is performed. In future research, it is necessary to develop an optimized algorithm based on the actual landmark's position data.

항공기용 지상 GPS 시스템의 송신안테나 최적배치 방법 (An Adoptable Deployment Method to the Transmitting Antennas of a Ground based GPS System for Aircraft)

  • 임중수;채규수
    • 한국위성정보통신학회논문지
    • /
    • 제7권3호
    • /
    • pp.105-109
    • /
    • 2012
  • 본 논문에서는 공항에서 항공기를 위해서 사용하는 지상용 GPS 시스템의 송신안테나 최적배치 방법에 대해서 기술하였다. 항공기는 정확한 위치정보를 획득하기 위해서 위성 GPS 신호를 주로 사용하지만 기상변화나 재밍신호 등으로 인하여 위성으로부터 GPS 신호를 수신하지 못하는 경우에는 지상 GPS 시스템을 사용한다. 지상 GPS 시스템은 송신안테나의 위치에 따라서 위치정확도가 크게 달라진다. 본 연구에서는 지상 GPS 시스템의 송신안테나 배치에 따른 측위정확도(DOP)를 예측할 수 있는 알고리즘을 개발했으며, 12개의 안테나를 사용하여 지상에서 고도 10km까지 3차원 영역에 적용하여 DOP 2.5인 영역을 정확하게 도출하였다.

AUTOMATIC ORTHORECTIFICATION OF AIRBORNE IMAGERY USING GPS/INS DATA

  • Jang, Jae-Dong;Kim, Young-Seup;Yoon, Hong-Joo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.684-687
    • /
    • 2006
  • Airborne imagery must be precisely orthorectified to be used as geographical information data. GPS/INS (Global Positioning System/Inertial Navigation System) and LIDAR (LIght Detection And Ranging) data were employed to automatically orthorectify airborne images. In this study, 154 frame airborne images and LIDAR vector data were acquired. LIDAR vector data were converted to raster image for employing as reference data. To derive images with constant brightness, flat field correction was applied to the whole images. The airborne images were geometrically corrected by calculating internal orientation and external orientation using GPS/INS data and then orthorectified using LIDAR digital elevation model image. The precision of orthorectified images was validated using 50 ground control points collected in arbitrary selected five images and LIDAR intensity image. In validation results, RMSE (Root Mean Square Error) was 0.365 smaller then two times of pixel spatial resolution at the surface. It is possible that the derived mosaicked airborne image by this automatic orthorectification method is employed as geographical information data.

  • PDF

Evaluating the web-application resiliency to business-layer DoS attacks

  • Alidoosti, Mitra;Nowroozi, Alireza;Nickabadi, Ahmad
    • ETRI Journal
    • /
    • 제42권3호
    • /
    • pp.433-445
    • /
    • 2020
  • A denial-of-service (DoS) attack is a serious attack that targets web applications. According to Imperva, DoS attacks in the application layer comprise 60% of all the DoS attacks. Nowadays, attacks have grown into application- and business-layer attacks, and vulnerability-analysis tools are unable to detect business-layer vulnerabilities (logic-related vulnerabilities). This paper presents the business-layer dynamic application security tester (BLDAST) as a dynamic, black-box vulnerability-analysis approach to identify the business-logic vulnerabilities of a web application against DoS attacks. BLDAST evaluates the resiliency of web applications by detecting vulnerable business processes. The evaluation of six widely used web applications shows that BLDAST can detect the vulnerabilities with 100% accuracy. BLDAST detected 30 vulnerabilities in the selected web applications; more than half of the detected vulnerabilities were new and unknown. Furthermore, the precision of BLDAST for detecting the business processes is shown to be 94%, while the generated user navigation graph is improved by 62.8% because of the detection of similar web pages.

다중 GPS를 이용한 EKF 기반의 실외 위치 추정 시스템 (EKF Based Outdoor Positioning System using Multiple GPS Receivers)

  • 최승환;김윤기;황요섭;김현우;이장명
    • 로봇학회논문지
    • /
    • 제8권2호
    • /
    • pp.129-135
    • /
    • 2013
  • In this paper, a high precision outdoor positioning system is newly proposed using multiple GPS receivers based on the Extended Kalman Filter (EKF). Typically, the GPS signal has the instantaneous errors that degrade the positioning seriously. Using the multiple GPS receivers instead of an expensive DGPS receiver, the positioning reliability and accuracy are improved in this research as a low cost solution. To incorporate the small displacement, an INS data have been tightly coupled to the GPS data, which has the inherit disadvantage of the cumulative error occurring over time. To achieve a stabilized and accurate positioning system, the multiple GPS receiver data are fused with the INS data through the EKF process. Through real navigation experiments of an outdoor mobile robot, the performance of the proposed system has been verified to be accurate comparable to DGPS system with a lower cost.

지상파 DMB 데이터 서비스의 TPEG프로토콜을 이용한 Assisted GPS 항법 시스템의 설계 및 구현 (Design and Implementation of Assisted GPS Navigation Systems Using TPEG Protocol of Terrestrial DMB Data Services)

  • 김병수;민승욱
    • 한국통신학회논문지
    • /
    • 제35권11B호
    • /
    • pp.1618-1623
    • /
    • 2010
  • 이 논문에서 지상파 DMB (T-DMB)의 데이터 서비스를 이용한 새로운 assisted GPS (A-GPS) 시스템을 제안한다. GPS 위성에서 전달되는 약한 신호와 신호 차단 때문에 델리매틱 단말기는 도심 환경에서 위치 결정에 어려움을 가지고 있다. 제안된 A-GPS 시스템은 GPS 위성으로부터 수신된 신호로부터 가상 거리를 계산하고 T-DMB 방송국으로부터 위성 정보 (ephemeris)를 수신하여 단말기의 위치를 결정하게 된다. GPS 시스템과 비교하여 제안된 시스템은 빠른 TTFF (time to first fix), 낮은 HDOP (horizontal dilution of position) 등의 향상된 성능을 보여준다. 실험을 통하여 제안된 시스템은 A-GPS 시스템으로서 구현 가능하고 강력한 방법이라는 사실을 확인할 수 있다.