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A denial-of-service (DoS) attack is a serious attack that targets web applications. 
According to Imperva, DoS attacks in the application layer comprise 60% of all the 
DoS attacks. Nowadays, attacks have grown into application- and business-layer at-
tacks, and vulnerability-analysis tools are unable to detect business-layer vulnerabil-
ities (logic-related vulnerabilities). This paper presents the business-layer dynamic 
application security tester (BLDAST) as a dynamic, black-box vulnerability-analysis 
approach to identify the business-logic vulnerabilities of a web application against 
DoS attacks. BLDAST evaluates the resiliency of web applications by detecting vul-
nerable business processes. The evaluation of six widely used web applications shows 
that BLDAST can detect the vulnerabilities with 100% accuracy. BLDAST detected 
30 vulnerabilities in the selected web applications; more than half of the detected 
vulnerabilities were new and unknown. Furthermore, the precision of BLDAST for 
detecting the business processes is shown to be 94%, while the generated user navi-
gation graph is improved by 62.8% because of the detection of similar web pages.
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1  |   INTRODUCTION

Web applications are one of the simplest ways to provide 
services to users. The ever-increasing demand for web ap-
plications has made their security a popular issue. According 
to Verizon, approximately 43% of the security-related events 
in 2017 were classified as attacks to web applications [1]. 
Web-security vulnerabilities constitute most of the reported 
vulnerabilities in the CVE database [2]. According to the 
Internet Security Threat Report issued by Symantec [3], in 
2016, approximately 75% of the web applications were vul-
nerable. In the Trustwave report [4], business-logic vulner-
abilities have been mentioned as the second most important 
vulnerabilities, thereby requiring the attention of researchers.

Business-logic vulnerabilities are susceptible to be mis-
used, thereby causing denial-of-service (DoS) attacks. This 
kind of attacks is known as business-layer DoS attacks. DoS 
attacks are on the rise and constitute one of the most common 
attacks that target computer networks. DoS attacks are still 
considered a major threat [5,6]. This attack may occur in dif-
ferent layers of the OSI model, such as the application layer 
or the business layer. Over the past years, DoS attacks have 
moved from the lower layers of the OSI model to the upper 
layers and the application layer. However, nowadays, attacks 
have moved to the business layer, which lies even above the 
topmost layer of the OSI model. The attacks in the busi-
ness layer are more effective and can be applied more eas-
ily. Detecting a business-layer DoS attack is much difficult 
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because of the lower attack traffic [7]. DoS attacks in the 
business layer waste away the victim's resources. Typically, 
an attacker inflicts unusual computational overheads on the 
victim's resources, such as the CPU and memory, by sending 
one or a few more requests. However, DoS attacks in the busi-
ness layer do not have malicious and bulky traffic. In fact, the 
web application vulnerable to business-layer DoS attacks has 
its normal functionality. The main reason for these vulner-
abilities is the design flaw. These vulnerabilities are not an 
outcome of programming errors.

Business-layer DoS vulnerabilities are application spe-
cific and their detection requires understanding the logic of 
web applications. These vulnerabilities provide the possi-
bility to the attacker to misuse the expected behavior of the 
web application. Therefore, detecting such vulnerabilities is 
difficult, and even web scanners are unable to detect them 
because of their failure to understand the logic of web appli-
cations. Therefore, the automatic detection of these vulnera-
bilities is not possible. The only way to detect them is using 
penetration testers, which depend on their skills and knowl-
edge of the business processes of web applications [8‒12].

Business-layer DoS vulnerabilities have been analyzed 
in numerous studies under different names (sophisticated 
DoS vulnerability [13], CPU-exhaustion vulnerability [13], 
algorithmic-complexity vulnerability [14], complexity vul-
ner-ability [14], worst-case time/space complexity [14,15], 
ReDoS [14], second-order DoS vulnerability [16], infinite 
loop [17‒19], semantic resource-exhaustion vulnerability 
[20], and tainted-loop vulnerability [20], high-complexity 
control structures [20]). Each of these studies analyzed spe-
cific cases of this type of vulnerability. The vulnerabilities 
examined in studies [13‒20] are similar, as they may be ex-
ploited by limited legal requests. Furthermore, identifying 
such vulnerabilities would be easier by understanding the 
logic of the web application. Unfortunately, the approaches 
proposed to detect these vulnerabilities [16,17,20] have false 
positives and require the web-application source code for 
performing the vulnerability analysis. Moreover, these ap-
proaches are for the web applications written in a particular 
language.

1.1  |  Analysis gaps

There is no dynamic approach for detecting business-layer 
DoS attacks. Besides, the previously proposed approaches 
were static and also had false positives. They were lan-
guage dependent and, thus, specific to a particular lan-
guage. None of them used the logic of web applications 
to detect vulnerabilities, although knowing the logic of 
the web application would make the identification of logic 
vulnerabilities easier.

In this study, we propose the business-layer dynamic 
application security tester (BLDAST), which is a black-
box technique to assess the DoS resiliency. We present a 
dynamic approach to detect the web applications vulnera-
ble to business-layer DoS attacks. Our approach does not 
have any false positives and is not language dependent 
either. Our previous work, BLProM [21], was a black-box 
technique to detect the business layer of a web applica-
tion. It extracted business processes from a web applica-
tion. This study extends and improves BLProM to detect 
the business processes in a web application. BLDAST 
uses improved BLProM to extract the business processes 
from a web application and finally identifies the vulnera-
bility of a web application to business-layer DoS attacks. 
Our test scenarios are context aware, implying that they 
are business aware and understand the business logic of 
web applications. The proposed method is independent 
of the technology used in the web applications and auto-
matically detects the vulnerabilities. Besides, it is shown 
that the precision of BLDAST in identifying the busi-
ness-logic processes is approximately 94%. Furthermore, 
BLDAST detects similar web pages to generate the opti-
mal user navigation graph and to prevent the generation of 
an infinite graph. The BLDAST-generated user navigation 
graph has improved by approximately 62.8%.

In short, in this study, we offer the following novelties.

•	 We define business-layer DoS attacks.
•	 We present BLDAST, a black-box, dynamic technique for 

security testing of web applications, to identify the busi-
ness-logic vulnerabilities against DoS attacks.

•	 We introduce a new black-box approach to identify similar 
web pages and business processes in the web applications.

•	 The precision of BLDAST in detecting the business pro-
cesses is approximately 94%, while the generated user nav-
igation graph is improved by approximately 62.8%.

The rest of this paper is organized as follows. Section 2 pre-
sents the related works. Section 3 presents the definition of 
business-layer DoS attacks. Section 4 describes the proposed 
approach for the black-box, dynamic testing of web applica-
tions. Sections 5 and 6 show the implementation and evalua-
tion of the proposed approach, respectively. Finally, Section 
7 concludes this study.

2  |   RELATED WORKS

2.1  |  Logic attacks (Business-Logic Attack)

There are two methods to prevent logic attacks (business-
layer attacks): (i) the defense method (detecting the attacks 
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during the execution time) and (ii) the prevention method 
(detecting the logic vulnerabilities existing in the web ap-
plication). BLOCK [22] has used the defense method to 
prevent logic attacks. It first obtains the behavioral model 
of the web application by monitoring the interaction of cli-
ents and the web application, and it then extracts a set of 
constants from the sequence of requests/responses and ses-
sion variables. Subsequently, it uses the extracted constants 
to evaluate the requests/responses. BLOCK detects as an 
attack each request/response that may violate the known 
constants.

SENTINEL [23], Doupe [24], Pelegrinio [25], and 
DetLogic [26] have used black-box prevention methods to 
detect logic vulnerabilities. SENTINEL [23] detected the 
logic shortcomings of accessing the database. It modeled a 
web application as a state machine. The black-box method 
was used to extract the features of the web application and 
detect the queries violating the extracted features. Web-
application features include the constants extracted from the 
SQL queries and session variables. Each malicious query 
that violates the detected constants is detected as an attack.

Doupe and others [24] have presented an approach for 
detecting the internal state of a web application by ob-
serving its output. The proposed approach crawls differ-
ent states of the web application and detects XSS and SQL 
injection vulnerabilities by applying proper input vectors. 
In fact, active method is used to detect vulnerabilities.

Pelegrino and Balzarotti [25] automatically extracted a 
number of behavioral patterns of users’ traffic. First, a model 
of web application was extracted, and then attack vectors 
were applied to it. The stored traffic of the user is analyzed to 
detect the patterns related to the logic of the web application. 
Such behavioral patterns should be verified by the extracted 
model.

DetLogic [26] was an approach for detecting different 
types of logical vulnerabilities such as parameter manip-
ulation, access control, and workflow bypass. It models 
the expected behavior of the web application as a state 
machine, Subsequently, it extracts the limitations of the 
state machine and employs the detected constraints to 
create an attack vector for detecting the aforementioned 
vulnerabilities.

2.2  |  Defense against application-layer 
DoS attacks

Application-layer DoS attacks usually render the web ap-
plication irresponsive. Attackers turn the system off by 
sending malicious inputs [21] and put the system in an 
endless loop or result in a recursive recall with super-
linear complexities [25,26]. A dynamic analysis to detect 

application-layer DoS attacks generates inputs that result 
in the worst execution time, and, therefore, the applica-
tion enters an endless loop [22‒24]. A dynamic analysis 
of large web applications is difficult, and, in some cases, 
the inputs with the worst execution time cannot be gener-
ated [12].

SLOWFUZZ [14] provided a framework for the automatic 
identification of algorithmic-complexity vulnerabilities (al-
gorithms running at the worst time and causing DoS attacks). 
It automatically detected the entries that caused the worst 
behavior (high-order times) in the program by checking the 
amount of resources consumed in the program.

Looper [18] was an approach for performing the dynamic 
analysis of a web application by determining whether the ap-
plication was endless.

WISE [15] generated the inputs that determined the exe-
cution time of a web application. It presented an automatic 
approach for detecting the efficiency problems of a web 
application. In a web application with no constraints on the 
length of inputs, WISE was able to detect the input with the 
worst execution time.

Gupta [21] presented a dynamic approach to prove 
whether the executed application was in endless execution.

A static analysis to identify the web applications vulner-
able to application-layer DoS attacks specifies the pieces of 
program codes that depend on the user input and have high 
complexity. By using these codes, the attacker causes the pro-
gram to be irresponsive [17].

SAFER [19] was a static-analysis tool for detecting the 
web applications vulnerable to DoS attacks before the appli-
cation deployment. SAFER focused on the complicated DoS 
attacks that result in the loss of resources in network-ori-
ented applications. The attacker often transmits one or a few 
number of requests for increasing the computational load of 
the internal resources of a system such as processor or stack 
space.

TORPEDO [16] was a static-analysis tool for detect-
ing a second-order DoS attack in web applications. In this 
type of attacks, first the database was filled with a great 
amount of data. Second, costly operations were performed 
on the input data, leading to the depletion of resources. 
However, TORPEDO was able to detect only the vulner-
ability of web applications written in PHP and had false 
positives.

3  |   BUSINESS-LAYER DOS 
ATTACK

In this part, the business-layer DoS attack is defined, and 
then an example of business-layer DoS vulnerabilities is 
presented.
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3.1  |  Definition 1 (Business-Layer DoS 
Attack)

A business-layer DoS attack is a business-aware sequence of 
requests compromising the system's availability and deplet-
ing its resources (bandwidth, CPU, memory, etc.) by exploit-
ing a developmental or operational software flaw/fault in the 
business-layer services of the web application.

3.2  |  Example of Business-Layer DoS Attack

Assume that an e-commerce web application provides the 
facility for its users to comment on a specific product and 
then shows all the comments for that product. If the ap-
plication considers no constraints on the number of sub-
mitted comments such that comments can be submitted 
infinitely, a business-layer DoS attack can be applied to 
the application by submitting a large number of comments 
and viewing all the submitted comments. In such attacks, 
by sending a few numbers of requests in parallel to view 
the submitted comments, the web application would be 
unable to respond.

In the above-mentioned example, if the web application 
uses mechanisms such as CAPTCHA before a user submits 
comments in the database, it would not be possible to auto-
matically submit a large number of comments. In addition, 
for viewing the comments section, the application must in-
vestigate the submitted comments. If there are too many com-
ments, then not all but a fraction of them are shown. In this 
case, the web application is not vulnerable to a business-layer 
DoS attack.

4  |   BUSINESS-LAYER DYNAMIC 
APPLICATION SECURITY TESTER

BLDAST evaluates the resiliency of a web application to 
business-layer DoS attacks. Figure 1 depicts the BLDAST 
overview. BLDAST is situated as a proxy between the web 
application and the web server. BLDAST comprises the fol-
lowing four main steps:

1.	 Extracting the user navigation graph;
2.	 Detecting the business processes of the web application;

3.	 Identifying the business processes that are vulnerable to 
business-layer DoS attacks;

4.	 Applying business-layer DoS test scenarios and evaluat-
ing the results.

First, a normal user crawls the web application, follow-
ing which his/her HTTP traffic is stored. BLDAST first 
extracts the user navigation graph from the stored traffic. 
Then, it uses the generated graph to extract the business 
processes of the application. It detects the business pro-
cesses vulnerable to DoS attacks, and it finally applies 
business-layer DoS test scenarios according to the detected 
critical processes. Figure 2 depicts the proposed steps for 
the dynamic security testing of web applications in the 
business layer.

4.1  |  Extracting user navigation graph

BLDAST first extracts the user navigation graph from 
the stored traffic. Figure 3 depicts the steps involved in 
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extracting the user navigation graph. The steps are as 
follows:

1.	 Preprocessing the raw input data;
2.	 Detecting the web pages of the web application existing in 

the stored traffic;
3.	 Clustering the web pages;
4.	 Extracting the user navigation graph.

4.1.1  |  Preprocessing raw input data

BLDAST sanitizes data to eliminate unnecessary items. 
In this study, only HTTP requests and HTTP responses are 
needed; nonetheless, the HTTP responses having a success-
ful status code 200 are needed. BLDAST eliminates the re-
sponses having unsuccessful codes and their corresponding 
requests. In addition, in this study, only the GET and POST 
requests are needed.

4.1.2  |  Detecting web-application pages 
existing in the stored traffic

Each web page of the web application can be modeled as 
a pair (request set, response set). The request set is a set 
of HTTP requests sent for loading the page. The response 
set is a set of HTTP responses sent for loading the page.

A user's stored traffic contains the main HTTP re-
quests for loading the webpage and also secondary re-
quests meant to load files of the page. To model the 
pages existing in the HTTP traffic as a pair (request set, 
response set), first the main requests in the HTTP traf-
fic are detected. The HTTP traffic based on the main de-
tected requests is then divided into blocks. Each block 
includes the main request and the HTTP traffic between 
the two main requests. All the requests and responses in 
the same block represent the request and response sets of 
a page. BLDAST considers a request as the main request 
if its referer header is different from the referer of the 
next request. In addition, the first request existing in the 
traffic is considered the main request because the first 
traffic does not have a referer. It should be mentioned that 
the referer header is a header of the HTTP request that 
represents the URI address of the previous page visited 
by the user.

Thus far, web-application pages have been modeled 
as a pair (request set, response set). The main response in 
the response set of each page should also be detected. The 
main responses have a content-type header with a text/html 
value. The main response is of text/html type. Furthermore, 
if the last response of the traffic is the main response, then 

the last HTTP request will be considered the main request. 
Therefore, each page of the web application is modeled as 
a pair (request set, response set), and the main requests and 
responses are marked.

4.1.3  |  Clustering web pages

In this step, BLDAST clusters web the pages. The purpose 
of clustering is to place similar web pages in one cluster. 
Each cluster represents one node of the user navigation 
graph. Therefore, the infinite development of the graph is 
avoided.

Each pair (request set, response set) shows one page of 
the web application. To extract the optimal user navigation 
graph, similar pages should be identified and subsequently 
clustered. In the user navigation graph, the nodes represent 
the unique pages of the web application and the edges the 
connection between the pages. In our context, two pages 
are considered similar when the user can perform similar 
actions on them. For instance, consider two pages that have 
a button. The button on the first page is “continue,” and 
the button on the second page is “save.” These two pages 
are different because the user performs different actions on 
them.

Because the final goal of BLDAST is to detect vul-
nerabilities, clustering identifies similar pages based on 
the goal of BLDAST. The input fields and hyperlinks that 
provide the possibility of interaction with the application 
are critical points in detecting vulnerabilities. Therefore, 
HTML elements that have critical points are considered 
for detecting similar pages. These elements include but-
tons, inputs, and anchors existing in each page. In addi-
tion, in the web-application pages, the position of images 
is related to the logic of the page. Therefore, the position 
of image is another important element in detecting similar 
pages.

4.2  |  Definition 2-1 (Similar Pages)

Two pages are considered similar if the user is able to perform 
the same actions on them and if the positions of important HTML 
elements in the pages are also the same. Important HTML ele-
ments include buttons, inputs, anchors, and images existing in 
each page.

4.3  |  Definition 2-2 (Similar Pages)

Pages whose structures are the subsets of another page in 
terms of important HTML elements are similar to the refer-
ence page.
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BLDATS identifies similar pages by comparing the 
feature vectors of two pages with each other. The fea-
ture vector of each page is the DOM path of important 
HTML elements existing in the page. BLDAST con-
siders every two pages with the same feature vector as 
similar pages and puts them in one cluster. The algo-
rithm used to identify similar pages is described in  
Section 5.1.

4.3.1  |  Extracting user navigation graph

In this step, BLDAST first extracts the graph edges 
that connect clusters. Each cluster represents a unique 
web-application page. Each cluster has a set of similar 
pages, each of which contains a URI and a referer field. 
Therefore, each cluster has a set of URIs and a set of ref-
erers, both of which are associated with the pages existing 
in that particular cluster. To find graph edges, the URI 
set of each cluster is compared to the referer set of other 
clusters. If they have at least one member in common, 
they will connect to each other. Assume that the URI set 
of cluster C1 shares members with the referer set of clus-
ters C2 and C3, then one can move from C1 to C2 and C3 
(C1 → C2 and C1 → C3); in other words, C1C2 and C1C3 
are graph edges.

4.3.2  |  Definition 3 (User Navigation Graph)

This graph is represented by tuple  <C0, C, E>. Here, C 
denotes the set of graph nodes, C0 ⊆ C the initial (first) 
node of the graph, and E ⊆ C ⨯ C the set of graph edges.

4.4  |  Detecting business processes in web 
application

In this step, BLDAST first identifies the final nodes in the 
user navigation graph, and it then detects business processes. 
The steps to detect business processes are depicted in Figure 
4. We now define the web-application process, final node, 
and business process.

4.4.1  |  Definition 4 (Web-Application 
Process)

A process P in a web application is a sequence of edges in the 
user navigation graph, such as E1, E2, …, Ek, where Ei ∈ E 
and Ei = Ci–1Ci.

4.4.2  |  Definition 5 (Final Node in the User 
Navigation Graph)

The final node F is the node such that when a web application 
reaches it, then the business process is completed.

By investigating HTTP responses, the final node can be 
identified. For instance, when a product is purchased, an 
expression such as “thank you for your purchase” is shown. 
By identifying a set of such expressions and searching for 
these expressions in the response messages, the final node 
can be determined. The keywords used to identify the final 
node are thanks, congratulations, successfully, log off, 
search results, among others. In addition, some buttons are 
good indicators for identifying the final node. The page 
after save button, the page after create button, and the page 
after submit button are some examples in this context.

4.4.3  |  Definition 6 (Business Process in the 
Web Application)

A business process in the web application is a process that 
meets at least one of the following requirements:

1.	 The beginning node of the process is the initial node 
of the user navigation graph (C0), and the ending node 
of the process is the final node of the user navigation 
graph (F).

2.	 If the process passes the beginning node once again and 
if the process length is greater than 2. (If in a process, 
the user returns to the beginning node and if the length 
of the loop is greater than 2, it is a business process).

4.5  |  Identifying business processes prone to 
business-layer DoS attack

BLDAST identifies business-logic vulnerabilities in a web 
application by analyzing the interaction of business processes 
with one another. BLDAST detects the business processes vul-
nerable to business-layer DoS attacks in two steps. In the first 
step, the processes that submit data to the database are identi-
fied. These processes should be repeatable for any desired num-
ber of times. These processes are called “inserting process.” In 
the second step, the processes that perform a costly operation 

F I G U R E  4   Detecting business processes in web applications
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on the inserted data are identified. These processes are called 
the “retrieving process.” Both the steps are depicted in Figure 
5. In other words, BLDAST identifies the parameters shared by 
business processes such that the first process is able to write on 
the mentioned parameters for any desired number of times and 
that the second process employs the values of the parameters.

The “inserting process” can be repeated for any desired 
number of times if the application does not have a defense 
mechanism such as CAPTCHA, Turing test, or similar 
mechanisms because these defense mechanisms prevent 
the automatic repetition of the process. The “retrieving 
process” can be performed if the application performs no 
sanitization on the data retrieved from the database (for 
example, bounding the size of the retrieved data).

4.5.1  |  Definition 7 (Tainted Parameter)

Assume that a web application W includes a set of web pages, 
where each page is defined as a pair (request set, response 
set). Each request with either the GET or POST method 
might have parameter(s) and is denoted by PP. Notably, PP 
is called the “tainted parameter” if there is possibility of sub-
mitting as many as desired requests for unlimited times, and 
the value of PP is stored in a table of the database following 
each submitted request.

4.5.2  |  Definition 8 (Inserting Process)

Assume that a web application W includes a set of business 
processes. Each business process further includes a set of 
web pages. If at least one of the business process's pages has 
a “tainted parameter,” the business process is called “insert-
ing process.”

4.5.3  |  Definition 9 (Response Time)

The response time of a page is the time between submitting 
the main HTTP request and receiving the main HTTP re-
sponse. To calculate the response time, it would be sufficient 
to subtract the time of receiving the main response from the 
time of submitting the main request.

The response time of a page is calculated twice, that is, be-
fore and after executing the “inserting process” for many times.

4.5.4  |  Definition 10 (Critical Page)

Assume that a web application W includes a set of web 
pages. “Critical page” is a page that retrieves all the val-
ues submitted for the “tainted parameter” and employs 
them as the input. The response time of the “critical page” 
is a function of n, which is the number of values entered 
for the “tainted parameter” or the number of times the 
“inserting process” is executed. In other words, increasing 
the number of times the “inserting process” is executed 
would increase the response time of the “critical page.”

4.5.5  |  Definition 11 (Retrieving Process)

Assume that a web application W has a set of business pro-
cesses. Each business process includes a set of web pages. 
If at least one of the business process's page is a critical web 
page, the business process would be a “retrieving process.”

If the “inserting process” and the “retrieving process” 
exist in the web application, the web application would be 
vulnerable to business-layer DoS attacks.

Identifying “inserting process”
To identify the “inserting process” in the application, the 
pages with at least one parameter should be marked. Then, 
the processes with at least one marked process are selected. 
Now, it should be determined whether the process can be ex-
ecuted many times. In other words, running the process sev-
eral times should not result in an error page. Moreover, the 
process should reach its final state.

The selected process is run time and again (for example, 
for 25 000 times). If the process reaches its final state in 
all the executions, it is considered an “inserting process.”

Identifying “retrieving process”
After identifying the “inserting process,” to identify the “re-
trieving process,” it would be sufficient to crawl the web 
application again, store the HTTP traffic, and calculate the 
response time of the pages; the pages whose response time 
has increased significantly are identified as “critical pages.” 
A threshold value must be considered for the response time. 
After investigating various applications, it is concluded that 
if the response time of the page has increased 10 times, the 
page can be considered a “critical page.” The processes that 
have a “critical page” are considered “retrieving processes.”

(1)ResponseTime=TimeReceiving main response− TimeSubmitting main request.

F I G U R E  5   Identifying DoS-attack-prone business processes
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4.6  |  Applying business-layer DoS test 
scenarios and evaluating results

The DoS test scenario in the business layer is performed after 
knowing about the “inserting process” and the “retrieving pro-
cess.” We call this scenario business-layer DoS (BLDoS). 
BLDoS comprises two steps. In the first step, the database is 
filled with a lot of unworthy data. In other words, BLDoS re-
peats the “inserting process” a lot of times. In the second step, it 
performs the “retrieving process” for a limited number of times 
in parallel. In fact, the second step performs a costly operation 
on the data entered in the database to consume system resources, 
thereby making the application inaccessible for a long time. By 
repeating the second step continuously, the application becomes 
inaccessible forever. Both these steps are depicted in Figure 6.

In the first step of BLDoS, where data flooding occurs, the 
“inserting process” is repeated in separate time intervals. In each 
interval, the “inserting process” is repeated for a few number of 
times until a lot of data enters the database. In this case, BLDoS 
cannot be detected using defense mechanisms, and as BLDoS 
occupies a small bandwidth, it cannot be detected using detec-
tion tools either.

As mentioned, there are the following two main condi-
tions guaranteeing that the web application is vulnerable to 
business-layer DoS attacks:

1.	 The ability to add data into the database for any desired 
number of times.

2.	 The time order of retrieving the data increases in propor-
tion to the increase in the number of entered data.

5  |   IMPLEMENTATION

In this section, the details of implementing different BLDAST 
sections are described.

5.1  |  Clustering similar pages

BLDAST clusters pages by detecting similar pages. The clus-
tering comprises the following three main steps:

1.	 Extracting the feature vector of each web page;
2.	 Identifying similar pages;
3.	 Clustering the pages.

5.1.1  |  Feature vectors of pages

BLDAST represents each page as a pair (request set, re-
sponse set). In this step, BLDAST performs data mining on 
each pair to extract the corresponding feature vector of each 
page. BLDAST models each page using the following feature 
vectors:

WP = total web pages existing in an application,
⩝w Є WP w = (DOMinputs, DOMbuttons, DOManchors, DOMimgs),
DOMinputs = ПiDOM (inputi),
DOMbuttons = ПiDOM (buttonsi),
DOManchors = ПiDOM (anchori),
DOM imgs = ПiDOM (imgi).

1.	 DOM (input): DOM path of  <input>tag in the 
page  +  value of type attribute in  <input>tag  +  value 
of name attribute in  <input>tag.

2.	 DOM (button): DOM path of the button existing in the 
page + text on the button.

3.	 DOM (anchor): DOM path of <a> tag in the page.
4.	 DOM (img): DOM path of the image existing in the page.

5.1.2  |  Identifying similar pages

After extracting the feature vector of each page, similar 
pages must be identified. The pages whose feature vector 
are a subset of that of another page or have the same fea-
ture vector as that of another page are considered similar 
pages.

The feature vector of each page of the application has four 
elements. The feature vector of page 1 is similar to that of 
page 2 if the following conditions are met:

•	 All the elements in the feature vector of page 1 are equal 
to the corresponding elements in the feature vector of 
page 2.

•	 All the elements in the feature vector of page 1 are a subset 
of the corresponding elements in the feature vector of page 
2 and vice versa.

•	 If one of the several elements in the feature vector of page 
1 is a subset of the corresponding element in the feature 
vector of page 2, then the other elements of the feature 
vector of page 1 should be the same as the corresponding 
elements in the feature vector of page 2.

•	 A null element is a subset of any element.

6  |   EVALUATION

To evaluate the proposed method, BLDAST was used in dif-
ferent web applications. Because BLDAST applies costly 
operations on the test applications, it cannot be applied to F I G U R E  6   Applying BLDoS

Applying business-layer DoS test scenario and evaluating results

Executing the inserting process of tainted parameters for many times

Executing retrieving process of tainted parameters for few times
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under-load and online applications. Thus, tests were per-
formed on six open-source applications that could be loaded 
offline. Table 1 presents the web applications used for the 
evaluation.

Our test bed had a web server (test target) and a client 
(BLDAST system). The web server and the client were 
loaded on a virtual machine. The web server runs Windows 
8.1 on a Pentium dual-core 2.20-GHZ CPU with 8  GB 
RAM. The BLDAST machine runs Windows 8.1 on an Intel 
core i7 2.20-GHZ processor with 8 GB RAM. Both the vir-
tual machines run on Windows 7 with 1 GB RAM and are 
on the same local area network. Table 2 summarizes the test 
results on selected web applications. More than half of the 
identified vulnerabilities are unknown.

6.1  |  Performance evaluations

To evaluate the performance of BLDAST, we define the fol-
lowing performance indicators.

•	 Accuracy: It denotes the precision of BLDAST in detecting 
vulnerabilities.

•	 Time complexity: It is the time complexity of BLDAST in 
analyzing web applications.

•	 Overhead: It is the average CPU usage, memory usage, and 
bandwidth usage of the BLDAST system.

•	 Effectiveness: It signifies how long BLDAST causes web 
applications to become unresponsive.

To evaluate the accuracy of BLDAST, we used the fol-
lowing metrics: true positive rate (TPR), false positive rate 
(FPR), false negative rate (FNR), precision, and recall. The 
TPR, recall, and precision of BLDAST are 100%. The FPR 
and FNR of BLDAST are 0%, as they have no false positive 
or false negative in detecting vulnerabilities.

The time needed for BLDAST to detect a vulnerability de-
pends upon the number of iterations of the inserting process. 
Its time complexity is O(n), where n denotes the number of 
items inserted in the database during phase 3. Phase 3 (identi-
fying the business processes vulnerable to business-layer DoS 
attacks) is BLDAST’s critical phase, as other phases (phases 
1, 2, and 4) are executed very soon within reasonable time. In 
addition, BLDAST executes phase 3 in separate time intervals. 
In each interval, the “inserting process” is repeated for a few 
number of times until a lot of data enters the database. Thus, 
the exact running time of BLDAST cannot be calculated.

To calculate the overhead of BLDAST, we used some 
metrics such as memory usage, CPU usage, and bandwidth 
usage of the BLDAST system during the execution time for 
detecting the vulnerabilities of the selected web applications. 
The average CPU usage, average memory usage, and average 
bandwidth usage of the BLDAST system were 13.1%, 35.6%, 
and 604 KB/s, respectively.

To evaluate the effectiveness of BLDAST, we calculated 
the time for which the server became unresponsive. This time 
depends upon the number of times the insertion process is exe-
cuted. Table 3 presents the results of applying the test scenarios 
to selected applications. On average, if the “inserting process” 
was repeated 25 000 times, the web application became inac-
cessible after 36 parallel executions of the “retrieving process.” 
The average time during which the application was inaccessible 
after 36 parallel executions of the “retrieving process” was 440 s.

6.2  |  Clustering evaluations

One of the main steps in extracting the user navigation graph 
is clustering the web pages. The accuracy and precision of the 
clustering operation are shown by using the following metrics:

•	 True Positive: samples that are fitted correctly in their 
cluster.

•	 False Positive: samples that are fitted incorrectly in the in-
tent cluster.

•	 Precision: it is calculated as follows:

T A B L E  1   Selected web applications for evaluation

Web applications Description

WackoPicko Photo sharing website [22‒25]

osCommerce-2.3.4 E-commerce [22,25‒27]

TomatoCart-1.1.8.6.1 E-commerce [12]

VirtueMart-3.0.14 E-commerce

OpenConf-6.8.1 Conference management system

Scarf-2007-02-27 Conference management system [22‒25]

T A B L E  2   Summary of experimental results

Web 
applications #LOC

# Attack 
requests

#  
vulner-
abilities 
(E)

# Vulner
abilities  
(D) #TP #FP

WackoPicko 4,037 11 3 3 3 0

osCommerce- 
2.3.4

86 693 1 5 5 5 0

TomatoCart- 
1.1.8.6.1

95 478 1 4 4 4 0

VirtueMart- 
3.0.14

93 421 9 1 1 1 0

OpenConf- 
6.8.1

22 889 11 13 13 13 0

Scarf-2007- 
02-27

1686 10 4 4 4 0

Abbreviations: LOC, lines of code; E, existing; D, detected; TP, true positive; 
FP, false positive.
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•	 Average running time: it shows the average running time of 
BLDAST spent on clustering the web pages. On average, 
BLDAT clusters web pages in 2 s.

Table 4 demonstrates the values of the mentioned metrics 
for clustering the selected web-application pages. The first 
column (#samples) shows the number of web pages in the 
HTTP traffic. The second column (#clusters) shows the num-
ber of clusters. In the subsequent columns, the previously 
mentioned measures are calculated for each web application. 
The table entry “Average” in the last row shows the average 
of the mentioned metrics for the selected web application. In 
Table 4, the average value of the clustering-precision metric 
for the selected applications is 0.95. On average, BLDAST 
performs clustering with precision of 0.95.

BLDAST extracts the user navigation graph for each se-
lected web application. The results of the extraction are pre-
sented in Table 5, where the “# Graph Nodes” indicates the 
number of clusters obtained from the clustering operation. 
For instance, the user navigation graph for WackoPicko has 
22 nodes, 48 edges, and 12 business processes.

Table 6 presents the characteristics of the user navigation graph 
without applying clustering. For instance, if clustering is not used 
to generate the user navigation graph, the generated user naviga-
tion graph for WackoPicko would have 89 nodes, 270 edges, and 

48 business processes. It is clear that using clustering to identify 
similar pages results in the generation of the optimal graph.

Table 7 presents the improvement in the BLDAST-generated 
user navigation graph compared with the pre-clustering graph. 
The last column, “Average,” shows the improvement in the se-
lected web applications. From Table 7, it can be observed that 
the number of nodes in the user navigation graph has improved 
by 62.8%. In other words, it means that the number of graph 
nodes in the output of BLDAST is 62.8% lower than the num-
ber of graph nodes without applying clustering.

6.3  |  Evaluation of the proposed model

To evaluate the proposed model for identifying business pro-
cesses, the following metrics are used. These measures are 
adopted from [28] with minor modifications. It should be men-
tioned that the model is the user navigation graph. The extracted 
business processes are the same processes that previously ex-
isted in the model. Log is the user HTTP traffic. The processes 
in the log are the same processes that the user has gone through 
and whose report is available in the HTTP traffic.

6.3.1  |  Fitness

Fitness shows how many of the processes existing in the log are in-
cluded in the proposed model. In other words, it describes the abil-
ity of the proposed model to numerically generate the processes 
existing in the log. The following formula calculates fitness:

The numerator denotes the number of processes in the pro-
posed model, which are available in the log as well. The denom-
inator denotes the number of processes available only in the log. 
The value of fitness is between zero and one, and the closer it 
is to one, the better the fitness would be. In our user navigation 
graph, the graph nodes denote unique pages. Each node might 
represent several similar pages. Therefore, each process exist-
ing in the graph might represent several processes in the log.

6.3.2  |  Simplicity

Simplicity calculates the complexity of the proposed model. It 
is calculated by comparing the number of processes in the pro-
posed model with the number of processes existing in the log. 
The number of processes in the model is the main factor of model 
complexity and model error. If each process exists only once in 
the model, the proposed model is considered a simple model. 
Considering the above discussion, simplicity is calculated as (4).

(2)Precision=
TruePositive

TruePositive+FalsePositive
.

(3)
F=

# business processes common in both the log and the model

# business processes in the log
.

T A B L E  4   Evaluation of the clustering of selected web-
application pages

Metrics
Web
applications

# 
Samples

# 
Clusters

# True 
positive

# False 
positive

Clustering 
precision

WackoPicko 89 22 99 15 0.87

osCommerce 210 40 227 5 0.98

Tomatocart 150 66 180 7 0.96

Virtuemart 130 66 122 8 0.94

OpenConf 104 39 104 0 1.00

Scarf 42 18 41 1 0.98

Average 120.83 43.00 128.83 6.00 0.95

T A B L E  3   Average of results of applying the test scenarios to 
selected applications

#Execution 
of inserting 
process

#Parallel execution of 
retrieving process

Time the server is 
unresponsive (s)

25 000 36 440

50 000 17 636

75 000 7 808

100 000 1 More than 1 h
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6.3.3  |  Precision of the model

Precision is the ratio of the number of processes in the model 
that do not exist in the log to the total number of processes 
in the log.

Table 8 presents the evaluation results of the proposed 
model in identifying business processes for the selected web 
applications. For instance, the fitness of our proposed model 
is 0.94 on average. The average simplicity and precision of 
the proposed model are, respectively, 0.97 and 0.94.

7  |   CONCLUSION AND FUTURE 
WORK

In this study, an approach known as BLDAST was pro-
posed to evaluate the robustness of web applications 
against business-layer DoS attacks. BLDAST comprises 
the following four steps: extracting the user navigation 
graph, finding the business processes of application, 
identifying business-layer processes vulnerable to DoS 
attacks, and applying DoS test scenarios against web ap-
plications in the business layer. On the laboratory scale, 
BLDAST was used to evaluate the robustness of six web 
applications against business-layer DoS attacks. More 
than half of the detected vulnerabilities were new and 

(4)
S=1−

#business processes ignored by the model +#duplicate business processes in the model

# business processes in the model+#business processes in the log
.

(5)
P=1−

#business processes in the model that do not exist in the log

#business processes in the log
.

T A B L E  5   Characteristics of user navigation graph generated using BLDAST for selected web applications

Web applications
metrics WackoPicko osCommerce TomatoCart VirtueMart Openconf Scarf

# Graph nodes 22 40 66 66 39 18

# Graph edges 48 66 87 87 39 43

# Business-logic process 12 23 31 31 42 18

T A B L E  6   Characteristics of user navigation graph for selected web application without applying clustering

Web applications
metrics WackoPicko osCommerce TomatoCart VirtueMart Openconf Scarf

# Graph nodes 89 210 150 130 104 42

# Graph edges 270 379 410 398 426 98

# Business-logic process 48 57 39 47 96 29

T A B L E  8   Evaluation of the proposed for identifying business processes

Web applications
metrics WackoPicko osCommerce TomatoCart VirtueMart Openconf Scarf Average

Fitness 0.91 0.95 0.96 0.95 0.95 0.94 0.94

Simplicity 0.96 0.97 0.98 0.97 0.97 0.97 0.97

Precision 0.92 0.95 0.96 0.95 0.95 0.94 0.94

T A B L E  7   Improvement of graph generation

Web applications
metrics WackoPicko osCommerce TomatoCart VirtueMart Openconf Scarf Average

# Graph nodes 75.3 76.5 56 49.2 62.5 57.1 62.8

# Graph edges 82.2 82.6 78.8 78.1 90.8 56.1 78.1

# Business-Logic 
process

75.0 59.6 20.5 34.0 56.3 37.9 47.2
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unknown. Furthermore, it was demonstrated that the pre-
cision of BLDAST in detecting the business processes of 
the selected applications was 94%, and that the generated 
user navigation graph was improved by 62.8% because of 
the detection of similar pages.

We intend to upgrade BLDAST to identify race condi-
tions in web applications. Detecting race conditions in a 
web application depends highly on identifying its business 
logic. No business-aware approach exists for detecting race 
conditions in web applications. The approaches that have 
been proposed thus far for identifying race conditions lead 
to DoS attacks.
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