• 제목/요약/키워드: Precision Arm

검색결과 210건 처리시간 0.026초

유연 로보트팔의 동특성 해석에 관한 연구 (A Study on the Dynamic Analysis for Flexible Robotic Arms)

  • 김창부;유영선
    • 한국정밀공학회지
    • /
    • 제10권3호
    • /
    • pp.107-116
    • /
    • 1993
  • In the design and operation of robitic arm with flexible links, the equation of motion are required to exactly model the interaction between rigid body motion and elastic motion and to be formulated efficientlyl. In this paper, the flexible link is represented by applying the D-H rigid link representation method to measure the elestic deformation. And the equations of motion of robotic arm, which are configured by the generalized coordinates of elastic and rigid degrees of freedom, are formulated from the principle of virtual power. Dynamic characteristics due to elastic deformation of each link are obtained by using F. E. M to model complex shaped link acurately and by eliminating elastic modes of higher order that do not largely affect motion to reduce the number of elastic degrees of freedom. Also presented is the result of simulation of flexible robotic arms whose joints are controlled by direct or PD control.

  • PDF

모듈화 개념의 퍼스널 로봇 플랫폼 개발 (Development of a Personal Robot Based on Modularization)

  • 최무성;양광웅;원대희;박상덕;김홍석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.742-745
    • /
    • 2004
  • If a personal robot is popularized like a personal computer in the future, many kinds of robots will appear and the number of manufacturers will increase as a matter of course. In such circumstances, it can be inefficient, in case each manufacturer makes a whole platform individually. The solutions for this problem are to modularize a robot component (hardware and software) functionally and to standardize each module. Each module is developed and sold by each special maker and a consumer purchases desired modules and integrates them. The standardization of a module includes the unification of electrical and mechanical interface. In this paper, the standard interfaces of modules are proposed and CMR(Component Modularized Robot)-P2 made with the modules(brain, sensor, mobile, arm) is introduced. In order to simplify and to make the modules light, a frame is used for supporting a robot and communication/power lines. The name of a method and the way to use that are defined dependently on the standard interfaces in order to use a module in other modules. Each module consists of a distributed object and that can be implemented in the random language and platform. The sensor, mobile and arm modules are developed on Pentium or ARM CPU and embedded Linux OS using the C programming language. The brain module is developed on Pentium CPU and Windows OS using the C, C++ and RPL(Robot Programming Language). Also tasks like pass planning, localization, moving, object perception and face perception are developed. In our test, modules got into gear and CMR-P2 executed various scenarios like guidance, errand and guarding completely.

  • PDF

속도와 가속도 제한에서 전향 보상기를 이용한 벨트 구동의 정밀제어 (Precision Control of Belt Drives using Feed Forward Compensator under Acceleration and Velocity Constraints)

  • 권세현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권5호
    • /
    • pp.713-720
    • /
    • 2009
  • Numerous applications of position controlling devices using servoing technique and transmission of energy through belt drives are practiced in the industry. Belt drive is a simple, lightweight, low cost power transmission system. Belt drives provide freedom to position the motor relative to the load and this phenomenon enables reduction of the robot arm inertia. It also facilitates quick response when employed in robotics. In this paper, precision positioning of a belt driven mechanism using a feed-forward compensator under maximum acceleration and velocity constraints is proposed. The proposed method plans the desired trajectory and modifies it to compensate delay dynamics and vibration. Being an offline method, the proposed method could be easily and effectively adopted to the existing systems without any modification of the hardware setup. The effectiveness of the proposed method is demonstrated through computer simulation and experimental results.

Dual-Arm로봇의 자기구성 퍼지제어 (Self-Organization Fuzzy Control of Dual-Arm Robot)

  • 김홍래;김종수;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.201-206
    • /
    • 2003
  • In this paper, it is presented a new technique to the design and real-time implementation of fuzzy control system based-on digital signal processors in order to improve the precision and robustness for system of industrial robot. Fuzzy control has emerged as one of the most active and fruitful areas for research in the applications of fuzzy set theory, especially in the real of industrial processes. In this thesis, a self-organizing fuzzy controller for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variable of the controller, In the synthesis of a FLC, one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult, SOFC is proposed fir a hierarchical control structure consisting of basic level and high level that modify control rules. The proposed SOFC scheme is simple in structure, fast in computation and suitable for implementation of real-time control. Performance of the SOFC is illustrated by simulation and experimental results for robot with eight joints.

  • PDF

어깨 및 팔 동작 부하 측정을 위한 관찰적 기법 비교 (Comparison of Six Observational Methods for Assessing Arm- and Hand-intensive Tasks)

  • 기도형
    • 대한안전경영과학회지
    • /
    • 제26권2호
    • /
    • pp.87-92
    • /
    • 2024
  • This study aims to compare six observational methods for assessing arm- and hand-intensive tasks, based on literature review. The comparison was conducted in viewpoints of body regions, force/external load, motion repetition, other factors including static posture, coupling, duration/break, pace, temperature, precision task, and final risk or exposure level. The number of risk factors assessed was more, and assessment procedure was more complex than the observational methods for assessing whole-body postural loads such as Ovako Working Posture Analysis System(OWAS), Rapid Upper Limb Assessment(RULA), and Rapid Entire Body Assessment(REBA). Due to these, the intra- and inter-reliabilities were not high. A past study showed that while Hand Arm Risk Assessment Method(HARM) identified the smallest proportion of the work tasks as high risk, Strain Index(SI) and Quick Exposure Check(QEC) hand/wrist were the most rigorous with classifying most work tasks as high risk. This study showed that depending on the observational technique compared, the evaluation factors, risk or exposure level, and evaluation results were different, making it necessary to select a technique appropriate for the characteristics of the work being assessed.

착유컵 자동 착탈을 위한 매니퓰레이터 개발 (A Robotic Milking Manipulator for Teat-cup Attachment Modules)

  • 이대원;김웅;김현태;김동우;최동윤;한정대;권두중;이승기
    • Journal of Biosystems Engineering
    • /
    • 제26권2호
    • /
    • pp.163-168
    • /
    • 2001
  • A manipulator for test-cup attachment modules, which was a part of a robot milking system, was developed to reduce cost and labor for cow milking processing. A Cartesian coordinate manipulator was designed for the milking process, because it was quite flexible and can be constructed more economically than any other configuration. The manipulator was made use of DC motors, screws for power transmission, a RS422 interface system for the transmission of coordinate values and a one-chip microprocessor, 89C52. Performance tests of the manipulator were conducted to measure experimentally the precision of all axes. Some of the results are as follows. 1. The Cartesian coordinate manipulator was designed and built. Dimension of the three perpendicular axes (X, Y, and Z) and one arm’s axis(W) to pick up and transfer the modules were 700㎜$\times$450㎜$\times$550㎜$\times$650㎜. The arm’s axis moved the teat-cup attachment module, which attached four teat-cup to four teats, detached four teat-cup from four teats, was designed and manufactured by using CAD, CAM and CNC. 3. After 10 replications of exercising the manipulator, mean precision values(positioning error) of X, Y, Z axes wee 0.48㎜, 0.20㎜, 0.19㎜, respectively. Therefore, we conclude the axes to have a precision better than 0.5㎜, had no problem to operate correctly the milking manipulator.

  • PDF

Dynamic control of redundant manipulators based on stbility condition

  • Chung, W.J.;Chung, W.K.;Youm, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.902-907
    • /
    • 1993
  • An efficient dynamic control algorithm that outperforms existing local torque optimization techniques for redundant manipulators is presented. The method resolves redundancy at the acceleration level. In this method, a systematic switching technique as a trade-off means between local torque optimization and global stability is proposed based on the stability condition proposed by Maciejewski [1]. Comparative simulations on a three-link planar arm show the effectiveness of the proposed method.

  • PDF

효율적인 부분곱의 재배치를 통한 고속 병렬 Floating-Point 고속연산기의 설계 (Design of Fast Parallel Floating-Point Multiplier using Partial Product Re-arrangement Technique)

  • 김동순;김도경;이성철;김진태;최종찬
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(5)
    • /
    • pp.47-50
    • /
    • 2001
  • Nowadays ARM7 core is used in many fields such as PDA systems because of the low power and low cost. It is a general-purpose processor, designed for both efficient digital signal processing and controller operations. But the advent of the wireless communication creates a need for high computational performance for signal processing. And then This paper has been designed a floating-point multiplier compatible to IEEE-754 single precision format for ARMTTDMI performance improvement.

  • PDF

여자유도를 이용한 상지 착용형 로봇의 메커니즘 설계 (Redundant Design of Wearable Robot Mechanism for Upper Arm)

  • 이영수;홍성준;장혜연;장재호;한창수;한정수
    • 한국정밀공학회지
    • /
    • 제26권7호
    • /
    • pp.134-141
    • /
    • 2009
  • Recently, many researchers have tried to develop wearable robots for various fields such as medical and military purposes. We have been studying robotic exoskeletons to assist the motion of persons who have problems with their muscle function in daily activities and rehabilitation. The upper-limb motions (shoulder, elbow and wrist motion) are especially important for such persons to perform daily activities. Generally for shoulder motion 300F is needed to describe its motion(extension/flexion, abduction/adduction, internal/external rotation) but we have used a redundant actuator thus making a 4 DOF system. In this paper, we proposed the mechanism design of the exoskeleton which consists of 4-DOF for shoulder and 1-DOF for elbow robotic exoskeleton to assist upper-limb motion. Then we compared the new mechanism design and prototype mechanism design. Here we also analyze the proposed system kinematically to find out and to avoid the singular point. This research will ensure that the proposed wearable robot system make human's motion more powerfully and more easily.

비선형 효과 및 작업 공간을 고려한 로보트 팔의 설계 (Robot Arm Design with Nonlinearity and Workspace Consideration)

  • 이상조;윤영식
    • 한국정밀공학회지
    • /
    • 제5권3호
    • /
    • pp.20-30
    • /
    • 1988
  • Using the design parameters of multi-joint manipulator, worspace of the manipulator were evaluated analytically, and the relation between such design parameters and nonlinearity of the manipulator were presented dynamically. The ratio of the volumes of a manipulator's workspace to the cube of its total link length presents a kinematic performance index [NVI] for the manipullator. It is possible to geometrically represent the manipulator dynamics with the generalized inertia ellipsoid (GIE). The relation between the GIE configuration and the characteristics of manipulator dynamics was analysed in terms of inertia and nonlinear forces (Coliolis and centrifugal forces). The nonlinearity caused by the change of the GIE configuration were affected by the difference between the major and minor axes length of the GIE. The results of this investigationare applied to the optimal design of the manipulator.

  • PDF