93 B AF Aol 2 & B =EA (1993,10,20~22)

Dynamic Control of Redundant Manipulators
Based on Stability Condition

“W.J. Chung®. W.K. Chung™*. and Y. Youm™

*

* Department of Precision and Mechanical Engineering,
Chang-Won National University
** Department of Mechanical Engineering, Automation Research Center,
Pohang Institute of Science and Technology

Abstract

An efficient dynamic control algorithm that outperforms
existing local torque optimization techniques for redundant
manipulators is presented. The method resolves redundancy
at the acceleration level. In this method, a systematic switch-
ing technique as a trade-off means between local torque opti-
mization and global stability is proposed based on the stability
condition proposed by Maciejewski [1]. Comparative simula-
tions on a three-link planar arm show the eflfectiveness of the
proposed method.

1 Introduction

Kinematically redundant robotic systems are defined as sys-
tems which possess more degrees of freedom than are required
to perform the specified task. Additional redundant joints can
be used to improve the performance of redundant manipula-
tor and to avoid obstacles and singularities. In addition, the
redundancy provides room for optimization of certain desired
criteria when tracking a specified trajectory. One of these
criteria is the utilization of redundancy for joint torque opti-
mization. -

When redundancy is resolved at the acceleration level to
instantaneously optimize joint torque, the joint acceleration is
related to the end-effector acceleration as follows:

Jo=%-J6 1)

where & € R™ represents the acceleration of an end-effector,
a, 6 € ™ are joint velocities and accelerations, respectively,
J is the Jacobian matrix and J is its time derivative. For re-
dundant manipulators, Eq. (1) will be underdetermined since
m < n. If a desired end-effector acceleration vector & is given,
and current joint positions and velocities are known, the gen-
eral solution to Eq. (1) is typically presented in the form

b=JtE-JO+(I-J*1)é (2)

where * denotes the pseudoinverse, (I - J+ J)is a projection
operator onto the null space of J, and ¢ is an arbitrary vector
in @ space.

On the other hand, it is well known that joint torques are
expressed as .
T=M@+ N 3)
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where M is the inertia matrix, and /N is a vector containing
terms such as Coriolis, centripetal and gravitational torques.
If 7 is used to denote the torque due to the minimum-norm ac-

" celeration, that is, the first term of Eq. (2), # can be obtained

as
F=MIt(E-JOH+N 4

Hollerbach and Suh [2] recast the optimization problem
of locally minimizing joint torques as finding the vector ¢ to
minimize }|]|, that is,

|ae - a* Dé+ 7| (5)

This is a straightforward least-squares problem which can be
solved by the pseudoinverse with the solution given by

d=-IMI-ITtt 7. (6)

Thus the solution of this torque optimization problem yields
joint accelerations as

b=Jt(@-J0)-[MIT-JtD)tF )
which was simplified using the following identity [3]
Blc B}t ={C B], (8)

where B is Hermitian and idempotent. They applied this
local torque optimization technique to the motion of three-link
planar manipulator. Although joint torques are successfully
minimized for short trajectories, some instabilities which may
require physically unrealizable torques have been observed for
long trajectories for this method.

Kazerounian and Nedungadi [4] proposed a solution for
the torque-minimization least-squares problem as follows:

Minimize 77

by Eq. (3).
Using Lagrangian multipliers, they arrived at a solution that

incorporates a generalized inverse, weighted by the squared
inertia matrix: '

7 subject to Eq. (1) where T is given

0=JtE-Jo-I-J}I)M'N, 9)
where

Jr=B"ITWABYINY?, B=MM (10)



From a computational point of view, the solution Eq. (9)
seems to have some advantages compared to Eq. (7); in the
latter solution only one pseudoinverse is to be calculated,
whereas Eq. (7) requires the calculation of two pseudoinverses.
They concluded that a trade-off method between local torque
optimization and global stability is necessary, and suggested
the following switching technique as:

JE@E-JO-(I-Jt HM'N il B < e
é =

JH(E-T8) if 116l 2 o

(1
In this technique, the norm of joint accelerations ||§]| is monj-
tored and when this norm is higher than a given threshold a,
they suggested that only the pseudoinverse-based particular
solution can be used to increase stability and to minimize
joint torques to some extent. Unfortunately, the value of the
threshold is often critical for the performance, which has not
been discussed in [4].

In order to avoid switching during the motion, Ma, Hirose,
and Nenchev [5] proposed two types of damped least-squares.

One is the damped squared-torque optimization which has =

the same structure as Eq. (9) obtained by Kazerounian and
Nedungadi:

b=ThE-JO-pI-IJLI)M'N (12)

where
JE o= wouuTgw-1 g7yt (13)
w o= [1-BT+pMTM]|, (14)

and 8, 0 € § < 1is a continuous function. The other is
the damped null-space torque optimization which is a slight
modification of Hollerbach and Suh’s method:

O=JYE-J8)y -7 [MIT-T*D))* 7, (15)
where v, 0 < 7 <1 is a weighting factor to balance the parti-
cular and the homogeneous solution. Unfortunately, it is not
possible to derive analytical expressions for the balancing fac-
tors, # and v, in order to guarantee a reasonable real-time
implementation.

In order to identify regions of stability and instability for
a local torque optimization scheme, Maciejewski [1] presented
the stability condition given by

6,:-6,>0, (16}
where 8y:and @), represent homogeneous joint velocity and ho-
mogeneous joiut acceleration vectors, respectively. Although
the above condition is not exact in determining the stability
of joint torques, it can be served as a general guideline to de-
termine stability. When Eq. (16) is true, the homogencous
acceleration term will increase the magnitude of the homo-
geneous joint velocity and will subsequently increase torque
requirements. This, in effect, amounts to a positive feedback
system and results in the instability of local torque optimiza-
tion as noted in [2]. However, he did not present a real-time
control law using this condition in order to overcome the in-
stability, while he focused on proving that the condition is
solely a function of a manipulator’s configuration,

In this paper, a new dynamic control algoritlim which is
based on the formulation of Kazerounian and Nedungadi’s

method is proposed. The proposed algorithm provides sys-
tematic switching between global stability and local torque
optimization by means of stability condition, and thus im-
proves the drawback of Kazerounian and Nedungadi’s method.
The reasons for generating physically unrealizable torques for
conventional local torque optimization schemes especially for
long trajectories are analyzed using the concept of aspect [6)
and the stability condition is also analyzed in this respect.
Comparative simulations with a planar three-link arm show
the good performance of the proposed method.

2 A New Dynamic Control Method

As méntioned in the previous section, Kazerounian and Ne-
dungadi proposed the explicit form of Eq. (9), for the com-
putation of joint accelerations as a solution to the torque-
minimization least-squares problem. They suggested that the
(unweighted) pseudoinverse J* improves the stability of Eq. (9)
when it is used instead of J} as:

b=JtE-JO-(T-J*I)M"'N. (17)
Thus the proposed algorithm to be formulated is based on this
equation.

In Eq. (17), the first term denotes the minimum-norm of
joint accelerations [{d]] as “minimum-norm acceleration.” For
the accurate tracking of the Cartesian trajectory xq4(-), the
usual error correcting term K,e + K,é is added to &4 in

place of & where e 2 x4 — x is the tracking error, K, and
K, are constant position and velocity feedback gain matrices.

Then the minimum-norm acceleration &, is given by

Om=J (E4+ K, &4+ Kpe—J8). (18)

The second term of Eq. (17} can be shown to be the ho-
mogeneous (or null-space) acceleration denoted by @, by pro-
jecting @ onto the null-space of the Jacobian matrix by means
of the projection operator (I — J* J) as follows:

b,

(I-J*neé
= (Jt-JrIINE-TO)-(T-JFIPM™ N
= (I-J*I)M'N (19)

where the property of pseudoinverse, J* J J+ = J*, and the
idempotency of (I ~ J*J), (I -~ I+ J)? = (I - J* J), are
used.

In order to increase the performance of the proposed me-
thod in the sense of global stability, we need a systematic
switching criterion to determine whether éh is added to 8,,
or not. As mentioned earlier, the stability condition proposed
by Maciejewski is adopted as a switching criterion for the pro-
posed method. To be more specific, if Eq. (16) is true, the
homogeneous acceleration must not be used in order to guar-
antee the global stability of the proposed method. Otherwise,
6y, is added to 8., so that the local torque optimization is
achieved in the stable region of operation.

A"ccording to the above strategy, the command accelera-
tion @4 is generated as follows:
5o O + 6y,
ba= { O

il 6,-6,<0

if 8y, - éh >0 (20)
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where 91, is given by
0, =(I-JtJ)6. (21)

The actual values of @ in Eq. (21) can be measured from a
redundant robot system. In the case of computer simulation,
the values of @ are obtained by solving the forward dyma-
mics of a manipulator through the fourth-order Runge-Kutta
algorithm. Consequently, the stability condition is incorpo-
rated in actively avoiding the instability region of operation
online rather than passively identifying the regions of stability
and instability offline. As shown in Eq. (20), the change of
the command acceleration according to the stability condition
generates the discontinuity on joint torque, which is inherent

for the switching process. However, the discontinuity does
not degrade the proposed method because the step-like torque
can easily be induced by normal electric actuators in the sta-
ble region of operation. This will be illustrated by computer
simulation in the following section.

3. Computer Simulation

The comparative evaluation of the proposed method against
the unweighted pseudoinverse method and Hollerbach and
Suh’s method were conducted by computer simulation. Link
lengths, masses, and the type of trajectory were chosen' similar
to those in Hollerbach and Suh’s work in order to compare
with their results. The simulated model is a planar three-
link manipulator model with revolute joints. Links have unit
length, mass of 10.0 kg, and are modeled as uniform thin rods.
Gravity is neglected. Relative joint variables are adopted and
the torques are defined accordingly. Actuators are assumed
to be located at the base of the manipulator. The joints are
labelled 1, 2, 3 from the base. The kinematic task is specified
as a Cartesian path for the end-effector, with zero initial and
final velocity. Joints are commanded to start at rest from a
given initial arm configuration. End-effector acceleration is of
the bang-bang type, with equal acceleration and deceleration
in the first and the last half, respectively.

The command torque 7, which is adopted as a control
input, is obtained from Eq. (3) using the command accelera-
tion given by Eqs. (18), (7), and (20) for the three methods
mentioned above, respectively. The fourth-order Runge-Kutta
integration algorithm is used to obtain joint positions and
velocilies, from the nonlinear ordinary differential equations
of forward dynamics. An integration step of 2 ms is accu-
rate enough to avoid the use of closed-loop correction. The
joint control system is simulated with position and velocity
feedback gain matrix K, = diag(256,256,256) rad/(m -s?)
and K, = diag(32,32,32) rad/(m -s), respectively. In this
simulation, 1.96 m and 0.98 m long path in z and y di-
rections, respectively, is considered. The arm starts from
8o = (180°, -90°, 0°), with accelerations &4 = (2, —1) m/s?
and &4 = (-2, 1) m/s? for the first and the last half of the
path respectively.

Arm motion and torque profiles for the unweighted pseu-
doinverse method are reported in Fig. 1(a) and (b), respec-
tively. As shown in Fig. 1(b), the method resulted in remark-
ably large torque, about 1400 N-m, at 2.6 5 to 2.8 5. As

pointed out in {2], the method fails to rule out the stability
problem. Figure 2(a)-(c) show the plots of arm motion, joint
torques, and @), - 6y, for Ilollerbach and Sul’s method. The
method is simulated utilizing the resolved acceleration con-
trol [7] with position and velocity feedback matrices K, and
K, (that is, &4 + I{, & + K, e), instead of & in Eq. (7). In
Fig. 2(b), physically unachievable joint torques, about 85,000
N - m, are observed at t = 2.5 s, which means that the method
has unrealistic characteristic of joint torque. This instability
is verified in Fig. 2 (c) where the stability condition Ou- 6y, has
a large positive value of 104 order at the same instant of peak
torque. As noted in {1], this amounts to an unstable system
with large positive feedback gains.

"The reason of torque instability can also be analyzed in
terms of the concept of aspect [6]. The joint space of a robot
can be decomposed into volumes corresponding to the various
classes of configurations, called “aspects.” When joint limits
are taken into account, the reachable domain in joint space is
divided into ,,C,, aspects for in task variables and n joint vari-
ables. One of the separating surfaces between aspects is the
locus of joint coordinates at which one of the m-order minors
(namely, full row-rank minors) of the manipulator Jacobian
J € R™*" is equal to zero. Mathematically , an aspect is
defined in [6). :
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Fig. 1. Simulation results for the unweighted pseudoinverse
method: (a) arm motion; (b) torque profiles.
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The relation between aspects and joint torques are ana-
lyzed as follows. Chang [8] proved that the manipulability
measure (9] can be rewritten in terms of the full row-rank

minors: N
P H
w=/det (JIT) = (Z 5?) (22)
i=1
where §;’s,t = 1,2,...,p, with p = ,,Cy,, are the full row-rank

minors of J € R™*" with m < n. The pseudoinverse of J
with full rank is given by
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Fig. .2. Simulation results for the Hollerbach and Suh’s
method: (a) arm motion; (b) torque profiles;
plot of @, - 6y; (d) minor profiles.

Jr=JT(2IT), (23)

The situation that the full row-rank minors have zero values
frequently means that aspects are frequently switched. So,
reviewing Eqs. (22) and (23), we can state that when the
minors &;'s have smaller values in the neighborhood of fre-
quent switching of aspects, they will induce the larger values
of the elements of J*. Accordingly, the command accelera-
tions given by Eqs. (18) and (7) have large values, which in
turn induces large torque requirements. Therefore, it can be
said that the frequent switching of aspects induces the insta-
bility problem.

Along this line of reasoning mentioned above, we can find
the behavior of the full row-rank minors given by

8 = detlJ' J?) = €95, + £il3sy (24)
6 = det[J? J¥ = lytas; (25)
83 = det{J? J'] = —lalasy — G1l323 (26)

in Fig. 2(b) where J* is the i-th column vector of the Jacobian
J; 83 = sinfy, s3 = sinfs, and s23 = sin{f; + 83), behave
especially when extremely large torques are required. From
this comparison, we can understand that the peak torques
occur during the last period of 0.4 s where the aspects are
switched as frequently as six times since each §;,i=1,2,3
becomes zero as shown in this figure.

As expected, the proposed method with the systematic
switching between local torque optimization and globl stabil-
ity can hold down the peak torque at reasonable low level,
about 130 N . m, as shown in Fig. 3(b). The plot of o, - 6,
is presented in Fig. 3(c). Although the values of @y, - 0y, are
positive during alimost entire movement, they are kept at rea-
sonably low positive values of 10~! order when compared with
those of lollerbach and Suh’s method. This implies that the
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stability of joint torque depends not on whether the sign of
9, - B, is positive or negative but on how large the positive
peak value of @y, - 8y, is. Therefore the proposed method is
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Fig. 3. Simulation results for the proposed method:
(a) arm motion; (b) torque profiles; (c) plot:
of 6y, - Oy; (d) minor profiles. .

able to minimize joint torques at a great extent and to main-
tain global stability by guiding the homogeneous acceleration
according to the stability condition.

As shown in Fig. 3(d), the switching of aspects occurs
only one time at about 1.7 5. Owing to the capability of the
proposed method to suppress the switching of aspects, the
peak torque of the proposed method can be drastically held
down at Jow values in comparison with those of the unweighted
pseudoinverse method and Hollerbach & Suh’s method. This
implies that the stability condition is closely related to sup-
pressing the switching of aspects. There is one important ob-
servation concerning the stability condition and the aspects;
that is, both are solely functions of manipulator’s configura-
tion.

4 Conclusion

A new dynamic control of redundant manipulators for guaran-
teeing globally stable behavior of joint torque was proposed.
The proposed method incorporates the systematic switching

technique between local torque optimization and global stabil-
ity by applying the homogeneous acceleration to the minimum-
norm acceleration according to the stability condition. The
method is eflicient and feasible for on-line implementation, re-
quiring only one pseudoinverse operation. Good performance
was verified through computer simulation in comparison with
other existing local torque optimization schemes. It was shown
that the unstable behavior of joint torque depends not on
whether the sign of o, - éh is positive or negative but on how
large the positive peak value of 8, - 8y, is. It was also pointed
out that the stability condition ultimately aims at suppress-
ing the switching of aspects, which should be proved rigorously
later.
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