• 제목/요약/키워드: Precise measurement

검색결과 1,032건 처리시간 0.3초

Energy Spectrum Measurement of High Power and High Energy (6 and 9 MeV) Pulsed X-ray Source for Industrial Use

  • Takagi, Hiroyuki;Murata, Isao
    • Journal of Radiation Protection and Research
    • /
    • 제41권2호
    • /
    • pp.93-99
    • /
    • 2016
  • Background: Industrial X-ray CT system is normally applied to non-destructive testing (NDT) for industrial product made from metal. Furthermore there are some special CT systems, which have an ability to inspect nuclear fuel assemblies or rocket motors, using high power and high energy (more than 6 MeV) pulsed X-ray source. In these case, pulsed X-ray are produced by the electron linear accelerator, and a huge number of photons with a wide energy spectrum are produced within a very short period. Consequently, it is difficult to measure the X-ray energy spectrum for such accelerator-based X-ray sources using simple spectrometry. Due to this difficulty, unexpected images and artifacts which lead to incorrect density information and dimensions of specimens cannot be avoided in CT images. For getting highly precise CT images, it is important to know the precise energy spectrum of emitted X-rays. Materials and Methods: In order to realize it we investigated a new approach utilizing the Bayesian estimation method combined with an attenuation curve measurement using step shaped attenuation material. This method was validated by precise measurement of energy spectrum from a 1 MeV electron accelerator. In this study, to extend the applicable X-ray energy range we tried to measure energy spectra of X-ray sources from 6 and 9 MeV linear accelerators by using the recently developed method. Results and Discussion: In this study, an attenuation curves are measured by using a step-shaped attenuation materials of aluminum and steel individually, and the each X-ray spectrum is reconstructed from the measured attenuation curve by the spectrum type Bayesian estimation method. Conclusion: The obtained result shows good agreement with simulated spectra, and the presently developed technique is adaptable for high energy X-ray source more than 6 MeV.

On the Improvement of Precision in Gravity Surveying and Correction, and a Dense Bouguer Anomaly in and Around the Korean Peninsula (한반도 일원의 중력측정 및 보정의 정밀화와 고밀도 부우게이상)

  • Shin, Young-Hong;Yang, Chul-Soo;Ok, Soo-Suk;Choi, Kwang-Sun
    • Journal of the Korean earth science society
    • /
    • 제24권3호
    • /
    • pp.205-215
    • /
    • 2003
  • A precise and dense Bouguer anomaly is one of the most important data to improve the knowledge of our environment in the aspect of geophysics and physical geodesy. Besides the precise absolute gravity station net, we should consider two parts; one is to improve the precision in gravity measurement and correction of it, and the other is the density of measurement both in number and distribution. For the precise positioning, we have tested how we could use the GPS properly in gravity measurement, and deduced that the GPS measurement for 5 minutes would be effective when we used DGPS with two geodetic GPS receivers and the baseline was shorter than 40km. In this case we should use a precise geoid model such as PNU95. By applying this method, we are able to reduce the cost, time, and number of surveyors, furthermore we also get the benefit of improving in quality. Two kind of computer programs were developed to correct crossover errors and to calculate terrain effects more precisely. The repeated measurements on the same stations in gravity surveying are helpful not only to correct the drifts of spring but also to approach the results statistically by applying network adjustment. So we can find out the blunders of various causes easily and also able to estimate the quality of the measurements. The recent developments in computer technology, digital elevation data, and precise positioning also stimulate us to improve the Bouguer anomaly by more precise terrain correction. The gravity data of various sources, such as land gravity data (by Choi, NGI, etc.), marine gravity data (by NORI), Bouguer anomaly map of North Korea, Japanese gravity data, altimetry satellite data, and EGM96 geopotential model, were collected and processed to get a precise and dense Bouguer anomaly in and around the Korean Peninsula.

Precise Forces Prediction by Indirect Force Measurement and Pseudo-inverse Technique (Indirect force 측정 방법과 Pseudo-역행렬을 이용한 정밀한 Force 예측)

  • 심재술;안병하;하종훈;정현출
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.564-567
    • /
    • 1997
  • In the design of structure the forces acting on the structure are important parameter for noise and vibration control. However, in the complex structure, the forces at the injection point on the structure cannot be measured directly. Thus it is necessary to find out indirect force evaluation method. In this paper forces have been measured with in-situ vibration responses and system information. Three existing techniques of indirect force measurement, viz. direct inverse, principal component analysis and regularization have been compared. It has been shown that multi-vibration responses are essential for the precise estimation of the forces. To satisfy those conditions, Rotary compressor is adopted as test sample, because it is very difficult to measure the injection forces from internal excitation to shell. It has also been obtained that relatively higher force is transmitted though three welding paths to the compressor shell. It shows a good agreement between direct and indirect force evaluation with curvature shell and plate and is investigated the possibility of force evaluation of rotary compressor as a complex structure.

  • PDF

The Comparison and Analysis of Maritime Precise Positioning using GPS Based Smartphone

  • Park, Sul Gee;Park, Sang Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제7권4호
    • /
    • pp.217-226
    • /
    • 2018
  • According to the Korea Coast Guard's maritime disaster statistics (Korea Coast Guard 2017, Korean Statistical information Service 2018), an average of 2,140 marine accidents occurred every year for the past 6 years and the number of accidents is increasing every year. Among them, maritime accidents of fishing vessels are the most frequent, and recently accidents involving fishing boat and leisure vessels are rapidly increasing as well. In particular, the number of accidents involving leisure vessels increased to about one-third of the accidents of fishing vessels, and emergency rescue requests are increasing every year accordingly. However, the number of crash accidents involving users of small vessels and marine leisure activities are increasing because of the difficulties of installing navigation equipment and electronic navigation charts. Recently, the demand for precise positioning using mobile devices is increasing in the fields of maritime safety, piloting support, and coastal survey. Although various applications of smart devices provide location-based services for users, the measurement results are discontinuous when using the position coordinates of the National Marine Electronics Association (NMEA) calculated by smartphone. Recently, Google announced that they will provide GPS raw data to developers from Android 7.0 Nougat. As a result, developers have an opportunity to receive precise carrier phase and code measurements to make more accurate positioning according to the performance of Android devices. This study analyzed GPS positioning performance using Android devices, and compared and analyzed the positioning performance at sea with high-performance GPS receivers.

Study on Measurement Accuracy by Auto-Collimation using Theodolite (데오드라이트를 이용한 자동 시준에 의한 측정 정확도에 관한 연구)

  • Lee Byoung-Gi;Kwon Jae-Wook;Yoon Yong-Sik
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1793-1796
    • /
    • 2005
  • The auto-collimation by using theodolite has been accomplished for the straight measurement and the horizontality adjustment. But according to the procedure of auto-collimation or composition of the measurement equipment, an error of the measurement can be occurred. Therefore, this paper accomplished the research for enhancement of measurement accuracy according to measurement procedure of auto-collimation. For that, it has been compared the study of the combination of several precise measurement equipment with using of several theodolite.

  • PDF

A Study on Measurement Uncertainty of CMM used for Inspection of Precision Machined parts. (정밀가공 부품 검사에 사용되는 삼차원측정기의 측정불확도 연구)

  • 이갑조;오상록;김종관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.3-9
    • /
    • 2004
  • The machining parts must be produced within the specification of drawing and those will be able to meet function and efficiency. At that time. it is necessary not only precision machine or machining technique but also the measurement technique is very important. So. the improvement of precise measurement technique is to be joined together at once with improvement of product technique. Finally. he quality and value of the parts are decided by precision measurement. This paper aims to study on he measurement uncertainty when the machined parts are inspected with 3-dimensional coordinate measuring machine. The objectives are to remove an error of measurement and to improve quality and productivity of the mass products.

  • PDF

A Measurement Apparatus of Lateral Restoring Force Exerted on Electrostatically Suspended Object (정전부상체에 작용하는 횡방향 복원력 측정장치)

  • Jeon Jong Up;Park Ki-Tae;Park Kyu-Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제22권2호
    • /
    • pp.60-69
    • /
    • 2005
  • In electrostatic suspension system of thin plates like a silicon wafer or an aluminum disk for hard disk applications, the lateral restoring force exerted on a suspended object plays an important role since the lateral motion of the suspended object, owing to the inherently stable restoring forces, can be passively stabilized without any active control of it. This paper reports about the measurement apparatus of the lateral restoring force originating from a relative translation of the suspended object with respect to the electrodes-for-suspension. An approximate calculation of the lateral force in disk-shaped objects, the structure of the measurement apparatus, a measurement method, stabilization condition and the guideline in designing the measurement apparatus are described. Experimental results obtained by using a 3.5-inch aluminum disk as a suspended object are presented as well in order to assess the magnitude of lateral force and stiffness, and also verify the usefulness of the measurement apparatus.

Development of an Automatic Evaluation System for the Precision Analysis of Potential Transformer Burden Characteristics (전압변성기용 부담특성 정밀분석용 자동평가시스템의 개발)

  • Kwon, Sung-Won;Kim, Mun-Seog;Jung, Jae Kap;Lee, Sung-Ha;Kim, Yung Soo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • 제54권10호
    • /
    • pp.457-464
    • /
    • 2005
  • Both ratio error and phase angle error in potential transformer(PT) are critically affected by used burden, connected in parallel to the secondary terminal of the PT. Thus precise measurement of burden value is very important for the evaluation of PT An automatic measurement system has been developed for the measurement of burden value and power factor of a burden. The ac voltage, current and power of the burden are measured precisely, and the burden value and power factor were calculated from these measured values. The resistance and inductance values of the tested burden are also calculated. The overall measurement uncertainties are calculated and reported with the burden value and power factor. The best measurement uncertainty for the burden measurement with the developed automatic measurement system was estimated to be 0.5 $\%$.

A Study on the Measurement System for Alignment of Cylindrical Forging Die (원통형 단조금형의 정렬을 위한 측정시스템에 관한 연구)

  • Youn, Jae-Woong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • 제18권1호
    • /
    • pp.83-89
    • /
    • 2009
  • In most multi-stage forging processes, the die spotting process or alignment of punch and die depends on the manual operation. It results a very tedious and inefficient procedure, thus the proper measurement system is needed to improve productivity and accuracy. This paper proposes a measurement system for alignment of die and punch which has a cylindrical holder, and describes the system concepts using 3 eddy-current displacement transducers and precise measurement jig. In order to apply this measurement system to real situations, the measuring procedures and system calibration method, etc. are proposed. Finally, the accuracy and productivity of this measurement system are investigated in this paper.

Measurement of 2-Dimensional Dopant Profiles by Electron Holography and Scanning Capacitance Microscopy Methods (일렉트론홀로그래피와 주사정전용량현미경 기술을 이용한 2차원 도펀트 프로파일의 측정)

  • Park, Kyoung-Woo;Shaislamov, Ulugbek;Hyun, Moon Seop;Yoo, Jung Ho;Yang, Jun-Mo;Yoon, Soon-Gil
    • Korean Journal of Metals and Materials
    • /
    • 제47권5호
    • /
    • pp.311-315
    • /
    • 2009
  • 2-dimensional (2D) dopant profiling in semiconductor device was carried out by electron holography and scanning capacitance microscopy methods with the same multi-layered p-n junction sample. The dopant profiles obtained from two methods are in good agreement with each other. It demonstrates that reliability of dopant profile measurement can be increased through precise comparison of 2D profiles obtained from various techniques.