• 제목/요약/키워드: Precipitation

검색결과 6,932건 처리시간 0.034초

우리나라에서의 산성우 연구동향에 관하여 (Study on the Tendency of Acid Rain in Korea)

  • 이준배;배정오
    • 한국환경농학회지
    • /
    • 제12권3호
    • /
    • pp.319-324
    • /
    • 1993
  • This reviews investigate to compare acid precipitation that caused by air pollutant. The ecosystem investigated the effect of acid precipitation. The study of foreign acid precipitation and acid precipitation of Korea investigated and injury of acid precipitation is prevented and consider a plan that it is presented.

  • PDF

미계측 관측 강수 자료 생성을 통한 제주도 지역의 수문총량 추정 (Estimating the Total Precipitation Amount with Simulated Precipitation for Ungauged Stations in Jeju Island)

  • 김남원;엄명진;정일문;허준행
    • 한국수자원학회논문집
    • /
    • 제45권9호
    • /
    • pp.875-885
    • /
    • 2012
  • 본 연구에서는 미계측 강수자료를 생성하여 공간 해석함으로써 제주도의 정확한 수문총량을 산정하였다. 미계측 강수자료는 본 연구에서 제시된 수정된 다중회귀선형 모형으로 생성하였으며 공간강수량은 PRISM을 적용하여 구하였다. 수정된 다중선형회귀 모형에 의한 미계측 강수자료의 추정 값들은 기존의 강수 패턴과 유사한 양상을 나타내어 모형의 정확도가 우수한 것으로 나타났으며, 공간강수량의 해석결과는 Case 1(원자료)과 Case 2(미계측 강수자료를 보완한 자료)의 연평균 강수량이 약 1.5%의 미미한 차이를나타내었으나 고도별 연평균 강수량 차이는 최대 37.4%가 증가하는 것으로 산정되었다. 따라서 본 연구에서 제안한 미계측 관측 자료 생성방법은 현재 관측소의 밀도가 낮은 곳과 국지적으로 강수량의 변화가 큰 곳에서의 수문총량의 산정시 유용할 것으로 판단된다.

우리나라 여름철 강수량의 기후적 분포 특성 (Climatological Features of Summer Precipitation in Korea)

  • 조하만;최영진;권효정
    • 한국수자원학회논문집
    • /
    • 제30권3호
    • /
    • pp.247-256
    • /
    • 1997
  • 1961년 이전에 관측이 시작되어 30년 이상의 관측자료가 있는 기상청의 15개 관측소의 강수량 자료를 이용하여 우리나라의 여름철 강수량 분포 특성을 조사하였다. 특히 이 연구에서는 우리나라 강수량 기후 평년값을 이용하여 기후적 특성을 조사하였으며, 지역별로 연 강수량, 여름철 강수량, 장마기간중 강수량의 연도별 변동을 비교 분석하고 그 상관을 조사하였다. 대체로 우리나라의 경우 연 강수량의 반 이상이 6, 7, 8월의 여름철에 집중되어 있고, 또 이 여름철 강수량은 장마에 크게 영향을 받는다. 또 지역별로 여름철 강수량 및 장마가 연 강수량에 미치는 기여도를 조사한 결과 서울을 비롯한 중서부 내륙지방이 장마의 영향을 가장 많이 받으며 동해안 중북부 지역과 제주도 지역은 상대적으로 장마의 영향이 적고, 국지적인 지형적 영향을 많이 받는 것으로 나타났다. 또한 우리나라의 경우 강수량의 연도별 변동이 심한 것으로 나타났으며, 특히 연 강수량보다 여름철 강수량과 장마기간중 강수량의 변화가 더 심한 것으로 나타났다. 따라서 국가 수자원 문제와 관련하여 연 강수량의 변동을 파악하기 위해서는 여름철 강수량의 변동에 대한 이해가 중요하며 아울러 장마의 특성 즉 몬순에 대한 파악이 함께 이루어져야 한다.

  • PDF

Assessment of extreme precipitation changes on flood damage in Chungcheong region of South Korea

  • Bashir Adelodun;Golden Odey;Qudus Adeyi;Kyung Sook Choi
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.163-163
    • /
    • 2023
  • Flooding has become an increasing event which is one of the major natural disasters responsible for direct economic damage in South Korea. Driven by climate change, precipitation extremes play significant role on the flood damage and its further increase is expected to exacerbate the socioeconomic impact in the country. However, the empirical evidence associating changes in precipitation extremes to the historical flood damage is limited. Thus, there is a need to assess the causal relationship between changes in precipitation extremes and flood damage, especially in agricultural region like Chungcheong region in South Korea. The spatial and temporal changes of precipitation extremes from 10 synoptic stations based on daily precipitation data were analyzed using the ClimPACT2 tool and Mann-Kendall test. The four precipitation extreme indices consisting of consecutive wet days (CWD), number of very heavy precipitation wet days (R30 mm), maximum 1-day precipitation amount (Rx1day), and simple daily precipitation intensity (SDII), which represent changes in intensity, frequency, and duration, respectively, and the time series data on flooded area and flood damage from 1985 to 2020 were used to investigate the causal relationship in the ARDL-ECM framework and pairwise Granger causality analysis. The trend results showed that majority of the precipitation indices indicated positive trends, however, CWD showed no significant changes. ARDL-ECM framework showed that there was a long-run relationship among the variables. Further analysis on the empirical results showed that flooded area and Rx1day have significant positive impacts on the flood damage in both short and long-runs while R30 mm only indicated significant positive impact in the short-run, both in the current period, which implies that an increase in flooded area, Rx1day, and R30 mm will cause an increase in the flood damage. The pairwise Granger analysis showed unidirectional causality from the flooded area, R30 mm, Rx1day, and SDII to flood damage. Thus, these precipitation indices could be useful as indicators of pluvial flood damage in Chungcheong region of South Korea.

  • PDF

대기 중 수은의 습식 침적 평가: 소양호를 중심으로 (Estimation of Atmospheric Mercury Wet-deposition to Lake So-yang)

  • 안명찬;한영지
    • 한국대기환경학회지
    • /
    • 제24권6호
    • /
    • pp.693-703
    • /
    • 2008
  • The important source of the mercury in water-column is the influx of atmosphere mercury, via dry and wet deposition. In this study, wet deposition of mercury was estimated to be $14.56{\mu}g/m^2$ during 15 months at the Lake Soyang, which is a little higher than those observed in the several rural US Mercury Deposition Network (MDN) sites with similar precipitation depth. The mercury concentration in precipitation did not show a positive correlation with atmospheric RGM (reactive gaseous mercury) concentration, while maintaining good correlation with atmospheric $PM_{2.5}$ at Soyang Dam. This result suggests that the contribution of particulate Hg to the total Hg wet deposition should be more significant than that of RGM. In this study, both precipitation depth and precipitation type affected the amount of wet deposition and the concurrent mercury levels in precipitation. There was generally an inverse relationship between precipitation depth and Hg concentration in precipitation. Precipitation type was another factor that exerted controls on the Hg concentration in precipitation. As a result, the highest concentration of Hg was observed in snow, followed by in mixture (snow+rain) and in rain.

Characteristic Changes of the Changma Season in the 2000s

  • Lee, Jun-Youb;Yoon, Ill-Hee
    • 한국지구과학회지
    • /
    • 제33권5호
    • /
    • pp.422-433
    • /
    • 2012
  • The purpose of this study is to investigate the characteristic changes of the Changma season in the 2000s. To accomplish this goal, we have used daily rainfall data collected over nearly 40 years (1971 to 2010). The average summer precipitation data including the Changma season were collected from 16 weather stations that are placed across the three major regions (i.e. central region, southern region, and Jeju region) as Korea Meteorological Administration divided. These precipitation data were analyzed to find out characteristic changes of the Changma season. Results of the precipitation data comparison among the major regions that, monthly average precipitation in the central region was the highest in July; its precipitation tended to increase from May to September. In the southern region, the precipitation amount was lowest in June and tended to increase in May, September, and August. In the Jeju region, the precipitation has been the highest in June and July for the past 30 years, whereas September has been highest month in the last 10 years. The precipitation amount in the Jeju region decreased both in June and July, whereas it tended to grow in May, August and September. A correlation coefficient formula by Karl Pearson has been used to find out correlations between the Changma season and the precipitation of the major regions in 2000s and normal years. It was found that the correlation coefficient has decreased from 0.723 to 0.524 in the 2000s (2001 to 2010) compared to normal years (1971 to 2000).

Optimization of the Lowry Method of Protein Precipitation from the H. influenzae Type b Conjugate Vaccine Using Deoxycholic Acid and Hydrochloric Acid

  • Kim, Hyun-Sung;Kim, Sang-Joon;Kim, Hui-Jung;Kim, Han-Uk;Ahn, Sang-Joem;Hur, Byung-Ki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권3호
    • /
    • pp.215-222
    • /
    • 2006
  • The Lowry method was used in this study to measure protein in Haemophilus influenzae type b (Hib) conjugate vaccines (polyribosylibitol phosphate-tetanus toxoid; PRP-TT) using deoxycholic acid (DOC) to induce protein precipitation. Trichloroacetic acid (TCA) did not induce precipitation adequately from the Hib conjugate bulk and the freeze-dried Hib conjugate product. Its yield was approximately 50%. The matrix structure of Hib conjugate inhibits precipitation by TCA. Although the Lowry method can be carried out without precipitation in Hib conjugate bulk when no residual impurities (adipic acid dihydrazide [ADH], 1-ethyl-3-(3-dimethylamino-propyl) carbodiimide-HCI [EDAC], phenol and cyanogens bromide [CNBr], etc.) are present, it cannot be used for Hib conjugate products that contain sucrose 8.5%, because 8.5% concentration of sucrose enhanced the protein concentration. DOC- and HCl-induced precipitation is an alternative method for evaluating the protein content of the Hib conjugate bulk and the Hib conjugate product. The precipitation was optimal with a final concentrate of 0.1% for DOC at $4^{\circ}C$ and pH 2. This Lowry method, using DOC/HCI precipitation to induce protein precipitation, was confirmed a consistent, reproducible, and valid test for proteins in Hib conjugate bulk and its freeze-dried product.

강수 및 비 강수 사례 판별을 위한 최적화된 패턴 분류기 설계 (Design of Optimized Pattern Classifier for Discrimination of Precipitation and Non-precipitation Event)

  • 송찬석;김현기;오성권
    • 전기학회논문지
    • /
    • 제64권9호
    • /
    • pp.1337-1346
    • /
    • 2015
  • In this paper, pattern classifier is designed to classify precipitation and non-precipitation events from weather radar data. The proposed classifier is based on Fuzzy Neural Network(FNN) and consists of three FNNs which operate in parallel. In the proposed network, the connection weights of the consequent part of fuzzy rules are expressed as two polynomial types such as constant or linear polynomial function, and their coefficients are learned by using Least Square Estimation(LSE). In addition, parametric as well as structural factors of the proposed classifier are optimized through Differential Evolution(DE) algorithm. After event classification between precipitation and non-precipitation echo, non-precipitation event is to get rid of all echo, while precipitation event including non-precipitation echo is to get rid of non-precipitation echo by classifier that is also based on Fuzzy Neural Network. Weather radar data obtained from meteorological office is to analysis and discuss performance of the proposed event and echo patter classifier, result of echo pattern classifier compare to QC(Quality Control) data obtained from meteorological office.

SCS-CN방법을 이용한 평창강 유역의 강수 함양량 선정 (Estimation of Precipitation Recharge in the Pyungchang River Basin Using SCS-CN Method)

  • 이승현;배상근
    • 한국환경과학회지
    • /
    • 제13권12호
    • /
    • pp.1033-1039
    • /
    • 2004
  • The methodology developed by Soil Conservation Service for determination of runoff value from precipitation is applied to estimate the precipitation recharge in the Pyungchang river basin. Two small areas of the basin are selected for this study. The CN values are determined by considering the type of soil, soil cover and land use with the digital map of 1:25,000. Forest covers more than $94{\%}$ of the study area.. The CN values for the study area vary between 47 in the forest area and 94 in the bare soil under AMC 2 condition. The precipitation recharge rate is calculated for the year when the precipitation data is available since 1990. To obtain the infiltration rate, the index of CN and five day antecedent moisture conditions are applied to each precipitation event during the study period. As a result of estimation, the value of precipitation recharge ratio in the study area vary between $15.2{\%}\;and\;35.7{\%}$ for the total precipitation of the year. The average annual precipitation recharge rate is $26.4{\%}\;and\;26.8{\%}$, meaning 377.9mm/year and 397.5mm/year in each basin.

전국 확률강수량 산정을 위한 비정상성 빈도해석 기법의 적용 (Application of a Non-stationary Frequency Analysis Method for Estimating Probable Precipitation in Korea)

  • 김광섭;이기춘
    • 한국농공학회논문집
    • /
    • 제54권5호
    • /
    • pp.141-153
    • /
    • 2012
  • In this study, we estimated probable precipitation amounts at the target year (2020, 2030, 2040) of 55 weather stations in Korea using the 24 hour annual maximum precipitation data from 1973 through 2009 which should be useful for management of agricultural reservoirs. Not only trend tests but also non-stationary tests were performed and non-stationary frequency analysis were conducted to all of 55 sites. Gumbel distribution was chosen and probability weighted moment method was used to estimate model parameters. The behavior of the mean of extreme precipitation data, scale parameter, and location parameter were analyzed. The probable precipitation amount at the target year was estimated by a non-stationary frequency analysis using the linear regression analysis for the mean of extreme precipitation data, scale parameter, and location parameter. Overall results demonstrated that the probable precipitation amounts using the non-stationary frequency analysis were overestimated. There were large increase of the probable precipitation amounts of middle part of Korea and decrease at several sites in Southern part. The non-stationary frequency analysis using a linear model should be applicable to relatively short projection periods.