Browse > Article
http://dx.doi.org/10.5572/KOSAE.2008.24.6.693

Estimation of Atmospheric Mercury Wet-deposition to Lake So-yang  

Ahn, Myung-Chan (Department of Environmental Science, College of Natural Science, Kangwon National University)
Han, Young-Ji (Department of Environmental Science, College of Natural Science, Kangwon National University)
Publication Information
Journal of Korean Society for Atmospheric Environment / v.24, no.6, 2008 , pp. 693-703 More about this Journal
Abstract
The important source of the mercury in water-column is the influx of atmosphere mercury, via dry and wet deposition. In this study, wet deposition of mercury was estimated to be $14.56{\mu}g/m^2$ during 15 months at the Lake Soyang, which is a little higher than those observed in the several rural US Mercury Deposition Network (MDN) sites with similar precipitation depth. The mercury concentration in precipitation did not show a positive correlation with atmospheric RGM (reactive gaseous mercury) concentration, while maintaining good correlation with atmospheric $PM_{2.5}$ at Soyang Dam. This result suggests that the contribution of particulate Hg to the total Hg wet deposition should be more significant than that of RGM. In this study, both precipitation depth and precipitation type affected the amount of wet deposition and the concurrent mercury levels in precipitation. There was generally an inverse relationship between precipitation depth and Hg concentration in precipitation. Precipitation type was another factor that exerted controls on the Hg concentration in precipitation. As a result, the highest concentration of Hg was observed in snow, followed by in mixture (snow+rain) and in rain.
Keywords
Mercury; Wet deposition; Precipitation type; RGM; $PM_{2.5}$;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Fleming, E.J., E.E. Mack, P.G. Green, and D.C. Nelson (2006) Mercury methylation from unexpected sources: molybdate-Inhibited freshwater sediments and an iron-reducing bacterium, Appl. Environ. Microbiol., 72(1), 457-464   DOI   ScienceOn
2 Hall, B. (1995) The gas phase oxidation of elemental mercury by ozone, Water, Air, Soil Pollution, 80, 301-315   DOI
3 Lai, S.O., T.H. Holsen, Y.S. Han, P.P. Hopke, S.M. Yi, P. Blanchard, J.J. Pagano, and M. Milligan (2007) Estimation of mercury loadings to Lake Ontario: Result from the Lake Ontario atmospheric deposition study (LOADS), Atmos. Environ., 41, 8205-8218   DOI   ScienceOn
4 Mitra, S.K., U. Barth, and H.R. Pruppacher (1990) A laboratory study of the efficiency with which aerosol particles are scavenged by snow flakes, Atmos. Environ., 24A, 1247-1254
5 Poissant, L. and M. Pilote (1998) Mercury concentrations in single event precipitation in southern Quebec, The Science Of the Total Environment, 213, 65-72   DOI   ScienceOn
6 Sparmacher, H., K. Fulber, and H. Bonka (1993) Below-cloud scavenging of aerosol particles; Particle-bound radionuclides? Experimental, Atmos. Environ., 27A, 605-618
7 Takahashi, T. (1963) Chemical composition of snow in relation to their crystal shapes, J. Met. Soc. Jpn., 41, 327-336   DOI
8 U.S. EPA (2001) Mercury Update: Impact in Fish Advisories. U.S. Environmental Protection Agency, Office of Water, 4305. EPA-823-F-01-011
9 U.S. EPA (2002) Method 1631, Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry. U.S. Environmental Protection Agency, Office of Water, 4303. EPA-821-R-02-019
10 Mason, R.P. and K.A. Sullivan (1997) Mercury in Lake Michi-gan, Environ. Sci. & Tech., 31, 942-947   DOI   ScienceOn
11 Hammerschmidt, C.R. and W.F. Fitzgerald (2006b) Methylmercury in freshwater fish linked to atmospheric mercury deposition, Environ. Sci. & Tech., 40(24), 7764-7770   DOI   ScienceOn
12 Sakata, M. and K. Asakura (2007) Estimating contribution of precipitation scavenging of atmospheric particulate mercury to mercury wet deposition in Japan, Atmos. Environ., 41, 1669-1680   DOI   ScienceOn
13 Ebert, P., K. Baechmann, G. Frank, and J. Tschiersch (1997) The chemical content of raindrops as a function of drop radius, part III: a new method to measure the mean aerosol particle size of different inorganic species in the atmosphere, Atmos. Environ., 31(2), 247-251   DOI   ScienceOn
14 Xu, X., X. Yang, D.R. Miller, J.J. Helble, and R.J. Carley (2000) A regional scale modeling study of atmospheric transport and transformation of mercury. II. Simulation results for the northeast United States, Atmos. Environ., 34, 4945-4955   DOI   ScienceOn
15 Kerbrat, M., B. Pinzer, T. Huthwelker, H.W. Gaggeler, M. Ammann, and M. Schneebeli (2008) Measuring the specific surface area of snow with X-ray tomography and gas adsorption: comparison and implications for surface smoothness, Atmos. Chem. Phys., 8, 1261-1275   DOI
16 Lynam, M.M. and G.J. Keeler (2005) Automated speciated mercury measurements in Michigan, Environ. Sci. & Tech., 39, 9253-9262   DOI   ScienceOn
17 Seigneur, C., K. Vijayaraghavan, K. Lohman, P. Karamchandani, and C. Scott (2004) Global source attribution for mercury deposition in the United States, Environ. Sci. & Tech., 38, 555-569   DOI   ScienceOn
18 Lamborg, C.H., W.F. Fitzgerald, G.M. Vandal, and K.R. Rolfhus (1995) Atmospheric mercury in northern wisconsin: source and species, Water, Air and Soil Pollution, 80, 189-198   DOI
19 Miller, N.L. and P.K. Wang (1991) A theoretical determination of the collection rates of aerosol particles by falling ice crystal plates and columns, Atmos. Environ., 25A, 2593
20 Douglas, T.A., M. Sturm, W.R. Simpson, J.D. Blum, L. Alvarez- Aviles, G.J. Keeler, D.K. Perovich, A. Biswas, and K. Johnson (2008) Influence of snow and ice crystal formation and accumulation on mercury deposition to the Arctic, Environ. Sci. & Tech., 42(5), 1542-1551   DOI   ScienceOn
21 Landis, M.S. and G.J. Keeler (2002b) Atmospheric mercury deposition to Lake Michigan during the Lake Michigan Mass Balance Study, Environ. Sci. & Tech., 36, 4518-4524   DOI   ScienceOn
22 이정순, 김민영, 김기현, 홍성민, 손장호, 이수철(2007) 장기 간 관측을 통한 황사 현상이 수은의 분포에 미치는 영향 고찰, 한국대기환경학회지, 23(2),169-182   과학기술학회마을   DOI
23 Keeler, G., G. Glinsorn, and N. Pirrone (1995) Particulate mercury in the atmosphere: Its significance, transport, transformation and sources, Water, Air and Soil Pollution, 80, 159-168   DOI
24 Landis, M.S., A.F. Vette, and G.J. Keeler (2002a) Atmospheric mercury in the Lake Michigan Basin: Influence of the Chicago/Gary urban area, Environ. Sci. & Tech., 36, 4508-4517   DOI   ScienceOn
25 Orihel, D.M., M.J. Paterson, R.A. Bodaly, and H. Hintelmann (2007) Experimental evidence of a linear relationship between inorganic mercury loading and methylmercury accumulation by aquatic biota, Environ. Sci. & Tech., 41, 4952-4958
26 Hammerschmidt, C.R., W.F. Fitzgerald, C.H. Lamborg, P.H. Balcom, and C.M. Tseng (2006a) Biogeochemical cycling of methylmercury in Lake and Tundra watersheds of Arctic Alaska, Environ. Sci. & Tech., 40(4), 1204-1211   DOI   ScienceOn
27 Hintelmann, H., R. Harris, A. Heyes, J.P. Hurley, C.A. Kelly, D.P. Krabbenhoft, S. Lindberg, J.W.M. Rudd, K.J. Scott, and V.L. St.louis (2002) Reactivity and mobility of new and old mercury deposition in a boreal forest ecosystem during the first year of the METAALICUS study, Environ. Sci. & Tech., 36(23), 5034-5040   DOI   ScienceOn
28 Sanemasa, I. (1975) The solubility of elemental mercury vapor in water, Bulletin of The Chemical Society of Japan, 48(6), 1795-1798   DOI