• 제목/요약/키워드: Precipitated calcium carbonate

검색결과 93건 처리시간 0.024초

Formation Characteristics of Precipitated Calcium Carbonate by Carbonation Process

  • 김치호;석민광;김양도
    • 한국재료학회지
    • /
    • 제31권1호
    • /
    • pp.1-7
    • /
    • 2021
  • The characteristics and morphology of precipitated calcium carbonate (PCC) particles produced by carbonation process with various experimental conditions are investigated in this study. The crystal structures of PCC formed by carbonation process are calcite and aragonite. The crystal structure of PCC particles synthesized without adipic acid additive is calcite only, regardless of the reaction temperature. Needle-like shape aragonite phase started to form at reactor temperature of 80℃ with the adipic acid additive. Particle size of the single phase calcite PCC synthesized without adipic acid additive is about 1 ~ 3 ㎛, with homogenous distribution. The aragonite PCC also shows uniform size distribution. The reaction temperature and concentration of adipic acid additive do not show any significant effects on the particle size distribution. Aragonite phase grown to a large aspect ratio of needle-like shape showed relatively improved whiteness. The measured whiteness value of single calcite phase is about 95.95, while that of the mixture of calcite and aragonite is about 99.11.

Biomineralization of Calcium Carbonate Polymorphs by the Bacterial Strains Isolated from Calcareous Sites

  • Dhami, Navdeep Kaur;Reddy, M. Sudhakara;Mukherjee, Abhijit
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권5호
    • /
    • pp.707-714
    • /
    • 2013
  • Microbially induced calcium carbonate precipitation (MICCP) is a naturally occurring biological process that has various applications in remediation and restoration of a range of building materials. In the present investigation, five ureolytic bacterial isolates capable of inducing calcium carbonate precipitation were isolated from calcareous soils on the basis of production of urease, carbonic anhydrase, extrapolymeric substances, and biofilm. Bacterial isolates were identified as Bacillus megaterium, B. cereus, B. thuringiensis, B. subtilis, and Lysinibacillus fusiformis based on 16S rRNA analysis. The calcium carbonate polymorphs produced by various bacterial isolates were analyzed by scanning electron microscopy, confocal laser scanning microscopy, X ray diffraction, and Fourier transmission infra red spectroscopy. A strain-specific precipitation of calcium carbonate forms was observed from different bacterial isolates. Based on the type of polymorph precipitated, the technology of MICCP can be applied for remediation of various building materials.

침강성 탄산칼슘을 이용한 젖산칼슘 합성에 관한 연구 (A Study on the Synthesis of Calcium Lactate Using Precipitated Calcium Carbonate)

  • 박주원;조계홍;박진구;안지환;한춘
    • 공업화학
    • /
    • 제19권2호
    • /
    • pp.173-178
    • /
    • 2008
  • 침강성 탄산칼슘(precipitated calcium carbonate, PCC)과 젖산을 반응시켜 칼슘보강제, 조직강화제 등으로 사용되는 젖산칼슘을 제조하고자 하였다. 실험에 사용된 PCC는 탄산화법과 수용액법에 의하여 합성된 칼사이트와 아라고나이트를 사용하였으며, 이렇게 합성된 PCC를 batch 반응기 내에서 젖산용액과 반응시켜 젖산칼슘을 합성하였다. 생성된 젖산칼슘의 수율은 칼사이트를 사용한 경우가 초기반응속도가 느림에도 불구하고 최종수율은 더 높게 나타났으며, 칼사이트와 아라고나이트 모두 반응온도 $60^{\circ}C$까지 수율이 증가하였으며 그 이상의 온도에서는 감소하였다. 이때의 최고수율은 아라고나이트 사용한 경우 85.0%, 칼사이트를 사용한 경우 88.7%를 나타내었다. 또한 젖산용액의 농도별 실험결과, 젖산용액의 농도가 2.0 mol% 이상으로 증가함에 따라 젖산 용액의 점도가 증가하여 물질전달이 이루어지지 않아 젖산칼슘의 수율은 감소하였다. 또한 생성된 젖산칼슘의 분석을 위해 SEM 및 FT-IR 분석을 실시하였으며, 그 결과 생성된 젖산칼슘은 반응조건에 상관없이 일정한 판상형의 결정임을 알 수 있었다.

Evaluation of Various Synthesis Methods for Calcite-Precipitated Calcium Carbonate (PCC) Formation

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Ahn, Ji Whan
    • Korean Chemical Engineering Research
    • /
    • 제55권3호
    • /
    • pp.279-286
    • /
    • 2017
  • This review paper evaluates different kinds of synthesis methods for calcite precipitated calcium carbonates by using different materials. The various processing routes of calcite with different compositions are reported and the possible optimum conditions required to synthesize a desired particle sizes of calcite are predicted. This paper mainly focuses on that the calcite morphology and size of the particles by carbonation process using loop reactors. In this regard, we have investigated various parameters such as $CO_2$ flow rate, Ca $(OH)_2$ concentration, temperature, pH effect, reaction time and loop reactor mechanism with orifice diameter. The research results illustrate the formation of well-defined and pure calcite crystals with controlled crystal growth and particle size, without additives or organic solvents. The crystal growth and particle size can be controlled, and smaller sizes are obtained by decreasing the Ca $(OH)_2$ concentration and increasing the $CO_2$ flow rate at lower temperatures with suitable pH. The crystal structure of obtained calcite was characterized by using X-ray diffraction method and the morphology by scanning electron microscope (SEM). The result of x-ray diffraction recognized that the calcite phase of calcium carbonate was the dominating crystalline structure.

Synthesis of amorphous calcium carbonate by gas-liquid reaction and its crystallization

  • Ahn Ji-Whan;Kim Hyung-Seok;Park Jin-Koo;Kim Ka-Yeon;Yim Going;Joo Sung-Min
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.654-657
    • /
    • 2003
  • We obtained amorphous calcium carbonate through the carbonation reaction of $Ca(OH)_2$, and through this reaction, observed changes in particle shape and phase by electric conductivity, XRD and TEM analysis. According to the result of the analysis, in the first declining stage of electric conductivity, amorphous calcium carbonate that has formed is coated on the surface of $Ca(OH)_2$ and obstructs its dissolution, and in the first recovery stage of electric conductivity, amorphous calcium carbonate is dissolved and re-precipitated and forms chains of fine calcite particles linearly joined. In the second decline of conductivity, viscosity increases due to the growth of chains of calcite particles, and finally the calcite particles are dissolved and separated into colloidal crystalline calcite, thereby increasing electric conductivity again.

  • PDF

고지재상연구 (제5보) -공정수 폐쇄화를 위한 칼슘경도 조절- (Recycling of Wastepaper(V): -Calcium Hardness Control of Process Water for Zero-Discharge System-)

  • 지경락;류정용;신종호;송봉근;오세균
    • 펄프종이기술
    • /
    • 제31권2호
    • /
    • pp.15-24
    • /
    • 1999
  • A new technique for recycling of white water was developed in order to reduce the calcium hardness in a closed OCC recycling system. Calcium ions present in the white water were precipitated as calcium carbonate by reacting with sodium carbonate, and the precipitated $CaCO_3$ was removed from the system using a flotation fractionation method, which has been commonly used in deinking process. In the flotation stage, a mixed gas of $CO_2$-air was purged into the flotation cell because the pH of $Na_2CO_3$-treated white water was reduced to neutral by $CO_2$ gas. Since $CaCO_3$ precipitate tends to stick onto fine fiber surface and then selectively removed from the white water, a proper amount of suspended solid in white water acts as an important factor for deciding the removal efficiency. By the application of $Na_2CO_3$ addition-$CO_2$ flotation to the short circulated white water, the calcium hardness was significantly reduced by 87% and more. Removal of calcium ions with fine fibers led to a drainage improvement, reduction of fresh water consumption, and enhanced efficiency of wet-end chemicals.

  • PDF

환경 유해 부산물 누출이 없는 지반 보강용 효소 기반 탄산칼슘 침전 기법 연구 (A Study on Enzyme-induced Carbonate Precipitation Technique for Soil Reinforcement without Releasing an Environmental Contaminant)

  • 이승형;김종민
    • 한국지반공학회논문집
    • /
    • 제37권4호
    • /
    • pp.39-47
    • /
    • 2021
  • 최근 효소 기반 탄산칼슘 침전(EICP) 기법은 시멘트 기반 지반보강공법의 대안 중 하나로 간주되어 왔다. 하지만 EICP 기법에서 발생하는 환경 유해 부산물인 암모늄 이온의 배출에 대한 문제는 해결되지 않고 있다. 따라서 본 연구에서는 칼슘 치환 제올라이트를 사용하여 환경 유해 부산물이 없는 EICP(Ze-EICP)의 실험적 연구를 수행하고자 한다. 실험결과는 칼슘 치환 제올라이트를 사용하는 Ze-EICP가 염화칼슘을 사용하는 EICP와 비교하여 암모늄 이온은 96.96%가 제거되었으며, 거의 동일한 양의 탄산칼슘이 침전되었음을 보여주었다. 또한 Ze-EICP는 제올라이트의 조밀화와 탄산칼슘의 고결화로 인해 EICP 대비 높은 강도증진 효과를 보여주었다.

Improvement of Biomineralization of Sporosarcina pasteurii as Biocementing Material for Concrete Repair by Atmospheric and Room Temperature Plasma Mutagenesis and Response Surface Methodology

  • Han, Pei-pei;Geng, Wen-ji;Li, Meng-nan;Jia, Shi-ru;Yin, Ji-long;Xue, Run-ze
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권9호
    • /
    • pp.1311-1322
    • /
    • 2021
  • Microbially induced calcium carbonate precipitation (MICP) has recently become an intelligent and environmentally friendly method for repairing cracks in concrete. To improve on this ability of microbial materials concrete repair, we applied random mutagenesis and optimization of mineralization conditions to improve the quantity and crystal form of microbially precipitated calcium carbonate. Sporosarcina pasteurii ATCC 11859 was used as the starting strain to obtain the mutant with high urease activity by atmospheric and room temperature plasma (ARTP) mutagenesis. Next, we investigated the optimal biomineralization conditions and precipitation crystal form using Plackett-Burman experimental design and response surface methodology (RSM). Biomineralization with 0.73 mol/l calcium chloride, 45 g/l urea, reaction temperature of 45℃, and reaction time of 22 h, significantly increased the amount of precipitated calcium carbonate, which was deposited in the form of calcite crystals. Finally, the repair of concrete using the optimized biomineralization process was evaluated. A comparison of water absorption and adhesion of concrete specimens before and after repairs showed that concrete cracks and surface defects could be efficiently repaired. This study provides a new method to engineer biocementing material for concrete repair.

식물추출액을 이용한 지반 고결제 개발 (Development of Soil Binder Using Plant Extracts)

  • 박성식;최선규;남인현
    • 한국지반공학회논문집
    • /
    • 제28권3호
    • /
    • pp.67-75
    • /
    • 2012
  • 본 연구에서는 식물추출액을 이용하여 모래 입자 사이에 친환경적으로 탄산칼슘을 석출시켜 모래 고결을 유발하고자 하였다. 식물추출액에는 고결유발 미생물(예: $Sporosarcina$ $pasteurii$)과 같이 요소를 탄산이온과 암모늄이온으로 분해하는 우레아제 성분이 포함되어 있다. 분해된 탄산이온과 용액 속에 녹아 있는 칼슘이온이 결합하여 탄산칼슘을 석출시키는 원리를 이용하여 모래의 고결을 유도하였다. 깨끗한 낙동강모래에 식물추출액과 요소 그리고 칼슘원(염화칼슘 또는 수산화칼슘)을 혼합한 용액을 섞어서 비빈 다음 다짐방법으로 공시체를 제작하였다. 요소의 농도를 세 종류로 달리하였으며, 제작된 공시체를 실내($18^{\circ}C$)에서 3일 동안 양생시킨 다음 일축압축시험과 SEM 및 XRD분석을 실시하여 사질토의 고결 정도를 연구하였다. 칼슘원에 관계없이 요소의 농도가 높을수록 탄산칼슘이 더 많이 침전되어 일축압축강도는 식물추출액을 사용하지 않은 경우보다 최대 10배까지 증가하는 경향을 보였다. 염화칼슘을 사용한 공시체가 수산화칼슘을 사용한 경우보다 더 높은 강도를 나타내었다.

Formation Mechanism of Aragonite by Substitute of Mg2+ Ions

  • Choi, Kyung-Sun;Park, Jin-Koo;Ahn, Ji-Whan;Kim, Hwan
    • 한국세라믹학회지
    • /
    • 제41권12호
    • /
    • pp.889-892
    • /
    • 2004
  • Acicular type aragonite precipitated calcium carbonate was synthesized by carbonation reaction of $Ca(OH)_2$ slurry and $CO_2$ gas. As increasing the initial concentration of $Mg^{2+}$ ion, calcite crystal phase substantially decreased while that of aragonite crystal phase increased. According to XRD and EDS analysis, it was found that the addition of $MgCl_2$ induced the $Mg^{2+}$ ion to substitute in $Ca^{2+}$ ion site of calcite lattice then the unstabled calcite structure be resolved, consequently the growth of calcite structure is interrupted while the growth of aragonite structure is expedited.