Browse > Article
http://dx.doi.org/10.4014/jmb.1212.11087

Biomineralization of Calcium Carbonate Polymorphs by the Bacterial Strains Isolated from Calcareous Sites  

Dhami, Navdeep Kaur (Department of Biotechnology, Thapar University)
Reddy, M. Sudhakara (Department of Biotechnology, Thapar University)
Mukherjee, Abhijit (Department of Civil Engineering, Thapar University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.5, 2013 , pp. 707-714 More about this Journal
Abstract
Microbially induced calcium carbonate precipitation (MICCP) is a naturally occurring biological process that has various applications in remediation and restoration of a range of building materials. In the present investigation, five ureolytic bacterial isolates capable of inducing calcium carbonate precipitation were isolated from calcareous soils on the basis of production of urease, carbonic anhydrase, extrapolymeric substances, and biofilm. Bacterial isolates were identified as Bacillus megaterium, B. cereus, B. thuringiensis, B. subtilis, and Lysinibacillus fusiformis based on 16S rRNA analysis. The calcium carbonate polymorphs produced by various bacterial isolates were analyzed by scanning electron microscopy, confocal laser scanning microscopy, X ray diffraction, and Fourier transmission infra red spectroscopy. A strain-specific precipitation of calcium carbonate forms was observed from different bacterial isolates. Based on the type of polymorph precipitated, the technology of MICCP can be applied for remediation of various building materials.
Keywords
Calcite; vaterite; urease; Bacillus; biofilm; carbonic anhydrase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 De Yoreo, J. J. and P. M. Dove. 2004. Shaping crystals with biomolecules. Science 306: 1301-1302.   DOI   ScienceOn
2 Achal, V., A. Mukherjee, P. C. Basu, and M. S. Reddy. 2009. Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J. Ind. Microbiol. Biotechnol. 36: 981-988.   DOI   ScienceOn
3 Bäuerlein, E. 2003. Biomineralization of unicellular organisms: An unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angew. Chem. Int. 42: 614-641.   DOI   ScienceOn
4 Braissant, O., G. Cailleau, C. Dupraz, and E. P. Verrecchia. 2003. Bacterially induced mineralization of calcium carbonate in terrestrial environments: The role of exopolysaccharides and amino acid. J. Sed. Res. 72: 485-490.
5 Castanier, S., G. Le Metayer-Levrel, and J. P. Perthuisot. 1999. Ca-carbonates precipitation and limestone genesis - the microbiogeologist point of view. Sediment. Geol. 126: 9-23.   DOI   ScienceOn
6 Castanier, S., G. Le Metayer-Levrel, and J. P. Perthuisot. 2000. Bacterial roles in the precipitation of carbonate minerals, pp. 32-39. In R. E. Riding and S. M. Awramik (eds.). Microbial Sediments. Springer-Verlag, Heidelberg.
7 Dhami, N. K., A. Mukherjee, and M. S. Reddy. 2012. Improvement in strength properties of ash bricks by bacterial calcite. Ecol. Eng. 39: 31-35.   DOI   ScienceOn
8 Dhami, N. K., A. Mukherjee, and M. S. Reddy. 2012. Biofilm and Microbial Applications in Biomineralized concrete, pp. 137-164. In Jong Seto (ed.). Advanced Topics in Biomineralization. InTech.
9 Ercole, C., P. Bozzelli, F. Altieri, P. Cacchio, and M. D. Gallo. 2012. Calcium carbonate mineralization: involvement of extracellular polymeric materials isolated from calcifying bacteria. Microsc. Microanal. 18: 829-839.   DOI   ScienceOn
10 Ercole, C., P. Cacchio, A. L. Botta, V. Centi, and A. Lepidi. 2007. Bacterially induced mineralization of calcium carbonate: The role of exopolysaccharides and capsular polysaccharides. Microsc. Microanal. 13: 42-50.   DOI   ScienceOn
11 Friedman, L. E., B. N. de Passerini Rossi, M. T. Messina, and M. A. Franco. 2001. Phenotype evaluation of Bordetella bronchiseptica cultures by urease activity and Congo red affinity. Lett. Appl. Microbiol. 33: 285-290.   DOI   ScienceOn
12 Hammes, F., N. Boon, J. De Villiers, W. Verstraete, and S. D. Siciliano. 2003. Strain-specific ureolytic microbial calcium carbonate precipitation. Appl. Environ. Microbiol. 69: 4901-4909.   DOI   ScienceOn
13 Lian, B., Q. Hu, J. Chen, J. Ji, and H. H. Teng. 2006. Carbonate biomineralization by soil bacterium Bacillus megaterium. Geochim. Cosmochim. Acta 70: 5522-5535.   DOI   ScienceOn
14 Holt, J. G., N. R. Krieg, P. H. A Sneath, J. T. Staley, and S. T. Williams. 1994. Bergey's Manual of Determinative Bacteriology, 9th Ed. Williams and Wilkins, Baltimore.
15 Karn, K. S., S. K. Chakrabarty, and M. S. Reddy. 2010. Characterization of pentachlorophenol degrading Bacillus strains from secondary pulp and paper industry sludge. Int. Biodeter. Biodegrad. 64: 609-613.   DOI   ScienceOn
16 Kawaguchi, T. and A. W. Decho. 2002. A laboratory investigation of cyanobacterial extracellular polymeric secretion (EPS) in influencing $CaCO_3$ polymorphism. J. Cryst. Growth 240: 230-235.   DOI   ScienceOn
17 Mann, S. 2001. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. Oxford University Press, Oxford.
18 Meldrum, F. and H. Colfen. 2008. Controlling mineral morphologies and structures in biological and synthetic systems. Chem. Rev. 108: 4332-4432.   DOI   ScienceOn
19 Merz-Preiss, M. and R. Riding. 1999. Cyanobacterial tufa calcification in two freshwater streams: Ambient environment, chemical thresholds and biological processes. Sediment Geol. 126: 103-124.   DOI   ScienceOn
20 Mitchell, A. C., K. Dideriksen, L. H. Spangler, A. B. Cunningham, and R. Gerlach. 2010. Microbially enhanced carbon capture and storage by mineral-trapping and solubility-trapping. Environ. Sci. Technol. 44: 5270-5276.   DOI   ScienceOn
21 Morikawa, M., S. Kagihiro, M. Haruki, K. Takano, S. Branda, R. Kotler, and S. Kanaya. 2006. Biofilm formation by a Bacillus subtilis strain that produces polyglutamate. Microbiology 152: 2801-2807.   DOI   ScienceOn
22 Rodriguez-Navarro, C., C. Jimenez-Lopez, A. Rodriguez-Navarro, M. T Gonzalez-Munoz, and M. Rodriguez-Gallego. 2007. Bacterially mediated mineralization of vaterite. Geochim. Cosmochim. Acta 71: 1197-1213.   DOI   ScienceOn
23 Park, I. S. and R. P. Hausinger. 1995. Requirement of carbon dioxide for in vitro assembly of urease nickel metallocenter. Science 267: 1156-1158.   DOI   ScienceOn
24 Qian, C., R. Wang, L. Cheng, and J. Wang. 2010. Theory of microbial carbonate precipitation and its application in restoration of cement-based materials defects. Chin. J. Chem. 28: 847-857.   DOI   ScienceOn
25 Rivadeneyra, M. A., G., Delgado, A. Ramos-Cormenzana, and R. Delgado. 1998. Biomineralization of carbonates by Halomonas eurihalina in solid and liquid media with different salinities: Crystal formation sequence. Res. Microbiol. 149: 277-287.   DOI   ScienceOn
26 Smith, K. S. and J. G. Ferry. 1999. A plant type (L class) carbonic anhydrase from the thermophilic methanoarchaeon Methanobacteium thermoautotrophicum. J. Bacteriol. 181: 6247-6253.
27 Sondi, I. and E. Matijevic. 2001. Homogeneous precipitation of calcium carbonates by enzyme catalyzed reaction. J. Colloid Interface Sci. 238: 208-214.   DOI   ScienceOn
28 Stahler, M. F., L. Ganter, L. Katherin, K. Manfred, and B. Stephen. 2005. Mutational analysis of Helicobacter pylori carbonic anhydrases. FEMS Immunol. Med. Microbiol. 44: 183-189.   DOI   ScienceOn
29 Stocks-Fischer, S., J. K. Galinat, and S. S. Bang. 1999. Microbiological precipitation of $CaCO_3$. Soil Biol. Biochem. 31: 1563-1571.   DOI   ScienceOn
30 Warren, L. A., P. A. Maurice, N. Parmar, and F. G. Ferris. 2001. Microbially mediated calcium carbonate precipitation: Implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiol. J. 18: 93-115.   DOI
31 Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739.   DOI   ScienceOn
32 Tourney, J. and B. T. Ngwenya. 2009. Bacterial extracellular polymeric substances (EPS) mediate $CaCO_3$ morphology and polymorph. Chem. Geol. 262: 138-146.   DOI   ScienceOn
33 Tsuneda, S., J. Jung, H. Hayashi, H. Aikawa, A. Hirata, and H. Sasaki. 2003. Influence of extracellular polymers on electrokinetic properties of heterotrophic bacterial cells examined by soft particle electrophoresis theory. Colloids Surf. B 29: 181-188.   DOI   ScienceOn