• Title/Summary/Keyword: Pre-torsion

Search Result 32, Processing Time 0.021 seconds

ON TOR-TORSION THEORIES

  • GOLRIZ M.;BIJANZADEH M. H.
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.2
    • /
    • pp.209-219
    • /
    • 2005
  • Tor-torsion theory was defined by Jan Trlifaj in 2000. In this paper we introduce the notion of Co envelopes, CoCovers and Tor-generators as dual of envelopes, covers and generators in cotorsion(Ext-torsion) theory and deduce that each R-module has a projective and a cotorsion coprecover.

Elastic flexural and torsional buckling behavior of pre-twisted bar under axial load

  • Chen, Chang Hong;Yao, Yao;Huang, Ying
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.273-283
    • /
    • 2014
  • According to deformation features of pre-twisted bar, its elastic bending and torsion buckling equation is developed in the paper. The equation indicates that the bending buckling deformations in two main bending directions are coupled with each other, bending and twist buckling deformations are coupled with each other as well. However, for pre-twisted bar with dual-axis symmetry cross-section, bending buckling deformations are independent to the twist buckling deformation. The research indicates that the elastic torsion buckling load is not related to the pre-twisted angle, and equals to the torsion buckling load of the straight bar. Finite element analysis to pre-twisted bar with different pre-twisted angle is performed, the prediction shows that the assumption of a plane elastic bending buckling deformation curve proposed in previous literature (Shadnam and Abbasnia 2002) may not be accurate, and the curve deviates more from a plane with increasing of the pre-twisting angle. Finally, the parameters analysis is carried out to obtain the relationships between elastic bending buckling critical capacity, the effect of different pre-twisted angles and bending rigidity ratios are studied. The numerical results show that the existence of the pre-twisted angle leads to "resistance" effect of the stronger axis on buckling deformation, and enhances the elastic bending buckling critical capacity. It is noted that the "resistance" is getting stronger and the elastic buckling capacity is higher as the cross section bending rigidity ratio increases.

Non-linear analyses model for composite box-girders with corrugated steel webs under torsion

  • Ko, Hee-Jung;Moon, Jiho;Shin, Yong-Woo;Lee, Hak-Eun
    • Steel and Composite Structures
    • /
    • v.14 no.5
    • /
    • pp.409-429
    • /
    • 2013
  • A composite box-girder with corrugated steel webs has been used in civil engineering practice as an alternative to the conventional pre-stressed concrete box-girder because of several advantages, such as high shear resistance without vertical stiffeners and an increase in the efficiency of pre-stressing due to the accordion effect. Many studies have been conducted on the shear buckling and flexural behavior of the composite box-girder with corrugated steel webs. However, the torsional behavior is not fully understood yet, and it needed to be investigated. Prior study of the torsion of the composite box-girder with corrugated steel webs has been developed by assuming that the concrete section is cracked prior to loading and doesn't have tensile resistance. This results in poor estimation of pre-cracking behaviors, such as initial stiffness. To overcome this disadvantage of the previous analytical model, an improved analytical model for torsion of the composite box-girder with corrugated steel webs was developed considering the concrete tension behavior in this study. Based on the proposed analytical model, a non-linear torsional analysis program for torsion of the composite box-girder with corrugated steel webs was developed and successfully verified by comparing with the results of the test. The proposed analytical model shows that the concrete tension behavior has significant effect on the initial torsional stiffness and cracking torsional moment. Finally, a simplified torsional moment-twist angle relationship of the composite box-girder with corrugated steel webs was proposed based on the proposed analytical model.

Experimental study of the torsion of reinforced concrete members

  • Chalioris, Constantin E.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.6
    • /
    • pp.713-737
    • /
    • 2006
  • This paper presents the results of an experimental investigation on the behaviour of 56 reinforced concrete beams subjected to pure torsion. The reported results include the behaviour curves, the failure modes and the values of the pre-cracking torsional stiffness, the cracking and ultimate torsional moments and the corresponding twists. The influence of the volume of stirrups, the height to width ratios and the arrangement of longitudinal bars on the torsional behaviour is discussed. In order to describe the entire torsional behaviour of the tested beams, the combination of two different analytical models is used. The prediction of the elastic till the first cracking part is achieved using a smeared crack analysis for plain concrete in torsion, whereas for the description of the post-cracking response the softened truss model is used. A simple modification to the softened truss model to include the effect of confinement is also attempted. Calculated torsional behaviour of the tested beams and 21 beams available in the literature are compared with the experimental ones and a very good agreement is observed.

INJECTIVE MODULES OVER ω-NOETHERIAN RINGS, II

  • Zhang, Jun;Wang, Fanggui;Kim, Hwankoo
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1051-1066
    • /
    • 2013
  • By utilizing known characterizations of ${\omega}$-Noetherian rings in terms of injective modules, we give more characterizations of ${\omega}$-Noetherian rings. More precisely, we show that a commutative ring R is ${\omega}$-Noetherian if and only if the direct limit of GV -torsion-free injective R-modules is injective; if and only if every R-module has a GV -torsion-free injective (pre)cover; if and only if the direct sum of injective envelopes of ${\omega}$-simple R-modules is injective; if and only if the essential extension of the direct sum of GV -torsion-free injective R-modules is the direct sum of GV -torsion-free injective R-modules; if and only if every $\mathfrak{F}_{w,f}(R)$-injective ${\omega}$-module is injective; if and only if every GV-torsion-free R-module admits an $i$-decomposition.

Three dimensional finite element simulations of fracture tests using the Craft concrete model

  • Jefferson, A.D.;Barr, B.I.G.;Bennett, T.;Hee, S.C.
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.261-284
    • /
    • 2004
  • Two enhancements to a recently developed plastic-damage-contact model for concrete are presented. The model itself, which uses planes of degradation that can undergo damage and separation but that can regain contact according to a contact law, is described. The first enhancement is a new damage evolution function which provides a completely smooth transition from the undamaged to the damaged state and from pre-peak to post-peak regions. The second is an improved contact function that governs the potential degree of contact with increasing opening on a crack plane. The use of a damage evolution function with a pre-peak has implications for the consistent tangent matrix/stress recovery algorithm developed for the model implementation, and amendments to this algorithm to accommodate the new function are described. A series of unpublished experimental tests on notched specimens undertaken in Cardiff in the mid 1990s are then described. These include notched beam tests as well as prismatic and cylindrical torsion tests. The tests are then considered in three dimensional finite element analyses using the modified Craft model implemented in the finite element program LUSAS. Comparisons between experimental and numerical data show reasonable agreement except that the numerical simulations do not fully describe the latter stages of the softening responses for the torsion examples. Finally, it is concluded that the torsion tests described provide useful benchmark examples for the validation of three-dimensional numerical models for concrete.

INDEPENDENTLY GENERATED MODULES

  • Kosan, Muhammet Tamer;Ozdin, Tufan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.867-871
    • /
    • 2009
  • A module M over a ring R is said to satisfy (P) if every generating set of M contains an independent generating set. The following results are proved; (1) Let $\tau$ = ($\mathbb{T}_\tau,\;\mathbb{F}_\tau$) be a hereditary torsion theory such that $\mathbb{T}_\tau$ $\neq$ Mod-R. Then every $\tau$-torsionfree R-module satisfies (P) if and only if S = R/$\tau$(R) is a division ring. (2) Let $\mathcal{K}$ be a hereditary pre-torsion class of modules. Then every module in $\mathcal{K}$ satisfies (P) if and only if either $\mathcal{K}$ = {0} or S = R/$Soc_\mathcal{K}$(R) is a division ring, where $Soc_\mathcal{K}$(R) = $\cap${I 4\leq$ $R_R$ : R/I$\in\mathcal{K}$}.

문형식 표지판 지지대의 모멘트 분포와 변형에 대한 해석 및 안정성 분석

  • Im, Hyeong-Tae;Kim, So-Hyeong;Park, Seong-Hyeon
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.251-256
    • /
    • 2015
  • In this paper, an systematic approach is presented, in which the bridge-type traffic sign structure is body out by CSDDA PrePost Processor. There is dead load and wind load that is working on the structure which will make force and moment. Analyzied the stress distribution of the standard form and by changing the shape, compared the safety in terms of deflection and stress (with the standard form) to know the effect of each component in the bridge-type traffic sign structure. The safety of deflection and stress is evaluated by maximum distance/100) and ASIC code respectively. The standard form of bridge-type traffic sign structure is established by two pairs of pillar and two pairs of floor beam. Replaced the links which is consist of flange and screws as the torsion spring and nm our analysis program. By adjusting variable of rigidity modulus of torsion spring, moment between column and beam is controled depending on value of rigidity modulus.

  • PDF

Direct design of partially prestressed concrete solid beams

  • Alnuaimi, A.S.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.741-771
    • /
    • 2007
  • Tests were conducted on two partially pre-stressed concrete solid beams subjected to combined loading of bending, shear and torsion. The beams were designed using the Direct Design Method which is based on the Lower Bound Theorem of the Theory of Plasticity. Both beams were of $300{\times}300mm$ cross-section and 3.8 m length. The two main variables studied were the ratio of the maximum shear stress due to the twisting moment, to the shear stress arising from the shear force, which was varied between 0.69 and 3.04, and the ratio of the maximum twisting moment to the maximum bending moment which was varied between 0.26 and 1.19. The required reinforcement from the Direct Design Method was compared with requirements from the ACI and the BSI codes. It was found that, in the case of bending dominance, the required longitudinal reinforcements from all methods were close to each other while the BSI required much larger transverse reinforcement. In the case of torsion dominance, the BSI method required much larger longitudinal and transverse reinforcement than the both the ACI and the DDM methods. The difference in the transverse reinforcement is more pronounce. Experimental investigation showed good agreement between design and experimental failure loads of the beams designed using the Direct Design Method. Both beams failed within an acceptable range of the design loads and underwent ductile behaviour up to failure. The results indicate that the Direct Design Method can be successfully used to design partially prestressed concrete solid beams which cater for the combined effect of bending, shear and torsion loads.