ON TOR-TORSION THEORIES

M. Golriz and M. H. Bijanzadeh

ABSTRACT. Tor-torsion theory was defined by Jan Trlifaj in 2000. In this paper we introduce the notion of Co envelopes, CoCovers and Tor-generators as dual of envelopes, covers and generators in cotorsion(Ext-torsion) theory and deduce that each *R*-module has a projective and a cotorsion coprecover.

0. Introduction

Let C denote the class of all R-modules where R is a commutative Noetherian ring with identity. For a class S of R-modules, we put:

$$S^{\mathsf{T}} = \{ N \in \mathcal{C} | \operatorname{Tor}_{1}^{R}(S, N) = 0, \ \forall s \in S \}$$

and

$$^{\mathsf{T}}S = \{ N \in \mathcal{C} | \operatorname{Tor}_{1}^{R}(N, S) = 0, \ \forall s \in S \}.$$

Throughout we use \mathcal{A} , \mathcal{B} to denote the classes of R-modules such that $\mathcal{A} = {}^{\mathsf{T}}B$, $B = \mathcal{A}^{\mathsf{T}}$, and we call (\mathcal{A}, B) a Tor-torsion theory.

EXAMPLE. (C, P) and (C, F) where P is the class of all projective R-modules and F is the class of all flat R-modules, are examples of Tor-torsion theories.

1. Properties of tor-torsion theories

PROPOSITION 1.1. With the above notations, Both A and B are closed under extensions, direct products and direct limits.

PROOF. We just prove that A is closed under extensions. The other parts are proved in [6, Theorem 8.10, 8.11].

Received June 17, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 13D30.

Key words and phrases: tor-torsion theory, co(pre)cover, co(pre)envelope, torgenerator.

Let $0 \longrightarrow M \longrightarrow N \longrightarrow L \longrightarrow 0$ be an exact sequence of R-modules such that M and L are in A; then we have the following exact sequence.

$$\cdots \longrightarrow \operatorname{Tor}_1(M, F) \longrightarrow \operatorname{Tor}_1(N, F) \longrightarrow \operatorname{Tor}_1(L, F) \longrightarrow \cdots$$

since $\operatorname{Tor}_1(M,F) = \operatorname{Tor}_1(L,F) = 0 \ \forall F \in \mathcal{B}$. So is the $\operatorname{Tor}_1(N,F)$; hence \mathcal{A} is closed under extension.

Proposition 1.2. The following conditions are equivalent:

- (i) $Tor_2(A, B) = 0$, for all A in A and all B in B.
- (ii) For each exact sequence $0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$ with Y, Z in B(in A) we have $X \in B(X \in A)$.

PROOF. (i) \longrightarrow (ii) We have the long exact sequence

$$\cdots \operatorname{Tor}_2(A, Z) \longrightarrow \operatorname{Tor}_1(A, X) \longrightarrow \operatorname{Tor}_1(A, Y) \longrightarrow \cdots$$

since $Y \in B$; $\operatorname{Tor}_1(A, Y) = 0$. Also by hypothesis $\operatorname{Tor}_2(A, Z) = 0$. It therefore follows that $\operatorname{Tor}_1(A, X) = 0$ and so $X \in B$.

(ii) \longrightarrow (i) Let $0 \longrightarrow K \longrightarrow P \longrightarrow Z \longrightarrow 0$ be an exact sequence with P projective and $Z \in B$. Then we have the exact sequence

$$\cdots \longrightarrow \operatorname{Tor}_2(A, P) \longrightarrow \operatorname{Tor}_2(A, Z) \longrightarrow \operatorname{Tor}_1(A, K) \longrightarrow \operatorname{Tor}_1(A, P) \longrightarrow .$$

But $\operatorname{Tor}_2(A,P)=\operatorname{Tor}_1(A,K)=0;$ hence $\operatorname{Tor}_2(A,Z)=0$ for all $A\in\mathcal{A}$ and all $Z\in B.$

DEFINITION 1.3. Let \mathcal{X} be a class of R-modules which is closed under extensions. Then for $X \in \mathcal{X}$, $M \in \mathcal{C}$;

(i) An R-homomorphism $\phi: X \longrightarrow M$ is called an X-copreenvelope of M if, for each $X' \in \mathcal{X}$, the following sequence is exact:

$$0 \longrightarrow X' \otimes X \longrightarrow X' \otimes M$$

(ii) An R-homomorphism $\psi: M \longrightarrow X$ is called an X-coprecover if, for each X', the following sequence is exact:

$$0 \longrightarrow X' \otimes M \longrightarrow X' \otimes X.$$

DEFINITION 1.4. The class (A, B) is said to have enough injectives if, for every module M, there is an exact sequence

$$0 \longrightarrow M \longrightarrow B \longrightarrow A \longrightarrow 0$$

with $A \in \mathcal{A}$, $B \in \mathcal{B}$.

Also we say that (A, B) has enough projectives if, for every module M, there is an exact sequence

$$0 \longrightarrow A \longrightarrow B \longrightarrow M \longrightarrow 0$$

with $A \in \mathcal{A}, B \in \mathcal{B}$.

PROPOSITION 1.5. Let the situation be as in 1.4 then $f: M \longrightarrow B$ of the exact sequence

$$0 \longrightarrow M \longrightarrow B \longrightarrow A \longrightarrow 0$$

is a \mathcal{B} -coprecover of M.

PROOF. Let $f': M \longrightarrow B'$, with $B' \in \mathcal{B}$, be an arbitrary R-homomorphism. Then we have the exact sequence:

$$0 = \operatorname{Tor}_1(A, B') \longrightarrow M \otimes B' \longrightarrow B \otimes B' \longrightarrow A \otimes B' \longrightarrow 0.$$

Note that if $0 \longrightarrow A \longrightarrow B \longrightarrow M \longrightarrow 0$ is as in the definition then it may not be a B-copre envelope of M.

PROPOSITION 1.6. If $\phi: M \longrightarrow X$ is injective with $X \in \mathcal{X}$ and $D = \operatorname{coker}(\phi) \in {}^{\mathsf{T}} X$, then ϕ is an X-copercover, such a coprecover is called a special X-coprecover of M.

PROOF. If $0 \longrightarrow M \xrightarrow{\phi} X \longrightarrow D \longrightarrow 0$ is exact, then for all $\phi': M \longrightarrow X'$, the sequence $0 = \operatorname{Tor}_1(X', D) \longrightarrow A \otimes M \longrightarrow A \otimes X$ is exact; so by definition, $\phi: M \longrightarrow X$ is X-coprecover of M.

NOTE. (i) We can define a special X-Copre envelope but in this case it is not necessarily an X-copre envelope.

(ii) Let $M \xrightarrow{\phi} N$ be injective. M is a pure submodule of N if and only if $\mathcal{D} = \operatorname{coker}(\phi) \in {}^{\mathsf{T}} \mathcal{C}$ or \mathcal{D} is flat.

COROLLARY 1.7. If $D = \operatorname{coker}(\phi)$, where $\phi : M \longrightarrow N$ is injective. Then $D \in {}^{\mathsf{T}} X$ if and only if $0 \longrightarrow X \otimes M \longrightarrow X \otimes N \longrightarrow X \otimes D \longrightarrow 0$ is exact for all $x \in X$.

2. Generators and tor-generators

One can define a generator and a minimal generator for $Tor(\mathcal{L}, M)$ as like as which is defined for $\mathcal{E}xt(\mathcal{L}, M)$ see [7].

Proposition 2.1. Let \mathcal{L} be a class of R-modules which is closed under extensions, and $0 \longrightarrow M \longrightarrow K \longrightarrow 0$ is a minimal generator for $Tor(\mathcal{L}, M)$ then $K \in \mathcal{L}^{\intercal}$.

PROOF. For any $\bar{L} \in \mathcal{L}$, consider an arbitrary extension of K by \bar{L} , say $0 \longrightarrow K \longrightarrow N \longrightarrow \bar{L} \longrightarrow 0$. Using a pushout diagram:

since L and \bar{L} are in L, P is in L. Next, since $0 \longrightarrow M \longrightarrow K \longrightarrow L \longrightarrow 0$ is a generator, there are homomorphism h, l, making diagram commutative. So the middle column is split. Therefore $hf: K \longrightarrow K$ is an automorphism. So, $hf \otimes 1_{\bar{L}}: K \otimes \bar{L} \longrightarrow K \otimes \bar{L}$ is an automorphism. Now we can write the following exact sequence:

$$0 \longrightarrow K \xrightarrow{f} N \xrightarrow{h} K \longrightarrow 0$$

By tensoring this exact sequence with \tilde{L} , we get the exact sequence:

$$\ldots \longrightarrow \operatorname{Tor}_1(K, \bar{L}) \longrightarrow K \otimes \bar{L} \longrightarrow N \otimes \bar{L} \longrightarrow K \otimes \bar{L} \longrightarrow 0.$$

П

And so
$$\operatorname{Tor}_1(K, \bar{L}) = 0$$
. Hence $K \in {}^{\mathsf{T}} \mathcal{L}$.

We can establish the results concerning $Tor(\mathcal{L}, M)$ by using the same arguments which applied to $\mathcal{E}xt(\mathcal{L}, M)$ as wrote in [7].

Now we want to define Tor-generators for $Tor(L, \mathcal{M})$.

DEFINITION 2.2. Let \mathcal{M} be a class of R-modules, an extension $0 \longrightarrow M \longrightarrow N \longrightarrow L \longrightarrow 0$ with $M \in \mathcal{M}$, is called a Tor-generator for $Tor(L,\mathcal{M})$ if for any extension $0 \longrightarrow \bar{M} \longrightarrow \bar{N} \longrightarrow L \longrightarrow 0$ there is a commutative diagram:

Furthermore, such a Tor-generator is said to be maximal if any commutative diagram

always implies that f is an automorphism (so that g is too).

NOTE. If $0 \longrightarrow M \longrightarrow N \longrightarrow L \longrightarrow 0$ is a Tor-generator for $\mathcal{T}or(L,\mathcal{M})$ and

is a commutative diagram with exact rows and $M' \in \mathcal{M}$, then $0 \longrightarrow M' \longrightarrow N' \longrightarrow L \longrightarrow 0$ is also a Tor-generator.

EXAMPLE. Any exact sequence $0 \longrightarrow M \longrightarrow P \longrightarrow L \longrightarrow 0$ with P projective is a Tor-generator for $Tor(L, \mathcal{M})$. Moreover if P is projective cover of L, then it is a maximal Tor-generator.

PROPOSITION 2.3. If \mathcal{M} is closed under extensions and $0 \longrightarrow M \longrightarrow K \longrightarrow L \longrightarrow 0$ is a maximal Tor-generator for $Tor(L, \mathcal{M})$, then $K \in \mathcal{T}$ \mathcal{M} .

PROOF. For any $\bar{M} \in \mathcal{M}$, consider an arbitrary extension of \bar{M} by K, say $0 \longrightarrow \bar{M} \longrightarrow N \longrightarrow K \longrightarrow 0$. Then we can write:

since M, \bar{M} are in M, so is G. But $0 \longrightarrow M \longrightarrow K \longrightarrow L \longrightarrow 0$ is a Tor-generator. So there are homomorphisms h, l making the diagram

commutative. Since Tor-generator is maximal (hf), (gl) are automorphisms. Now $gl: K \longrightarrow K$ induces automorphism $K \otimes \bar{M} \stackrel{gl \otimes 1_{\bar{M}}}{\longrightarrow} K \otimes \bar{M}$. If we tensor the exact sequence $0 \longrightarrow K \longrightarrow N \longrightarrow K \longrightarrow 0$ by \bar{M} , then we obtain an exact sequence; so $Tor_1(K, \bar{M}) = 0$ for all $\bar{M} \in \mathcal{M}$.

THEOREM 2.4. Let \mathcal{M} be closed under inverse limits. For an R-module L, if $Tor(L, \mathcal{M})$ has a Tor-generator, it must have a maximal Tor-generator.

For the proof of this theorem, we need the following lemmas:

LEMMA 2.5. Let \mathcal{M} be closed under inverse limits. If $0 \longrightarrow M \longrightarrow N \longrightarrow L \longrightarrow 0$ is a Tor-generator for $\mathcal{T}or(L,\mathcal{M})$, then there is a Torgenerator $0 \longrightarrow \bar{M} \longrightarrow \bar{N} \longrightarrow L \longrightarrow 0$ and the commutative diagram

such that for any Tor-generator $0\longrightarrow M^*\longrightarrow N^*\longrightarrow L\longrightarrow 0$ and any commutative diagram

with exact rows, we have Im(h) = Im(hg).

PROOF. We try to derive a contradiction by assuming that such a Tor-generator does not exist.

Put $M_0 = M$ and $N_0 = N$. By assumption there exsit a Torgenerator $0 \longrightarrow M_1 \longrightarrow N_1 \longrightarrow L \longrightarrow 0$ such that in the commutative diagram

 g_{01} is not projective. By assumption again $0 \longrightarrow M_1 \longrightarrow N_1 \longrightarrow L \longrightarrow 0$ does not satisfy the desired property. In other words, there is a Torgenerator $0 \longrightarrow M_2 \longrightarrow N_2 \longrightarrow L \longrightarrow 0$ and

such that $\operatorname{Im}(g_{01}) \subsetneq \operatorname{Im}(g_{02})$, where $g_{02} = g_{01} \circ g_{12}$. By repeting the same process, for each $n \in \mathbb{N}$, we can find a Tor-generator $0 \longrightarrow M_n \longrightarrow N_n \longrightarrow L \longrightarrow 0$ and homomorphism g_{in} for all i < n such that for any k < m < n, $g_{kn} = g_{km} \circ g_{mn}$ and

$$\operatorname{Im}(g_{01}) \subsetneq \operatorname{Im}(g_{02}) \subsetneq \operatorname{Im}(g_{03}) \subseteq \cdots \subset N$$

so $card(Z') \leq card(N)$.

Since

We wish to demonstrate that the cardinality of N must be grater than that of any ordinal number β . Consider the exact sequence

$$0 \longrightarrow \lim M_n \longrightarrow \lim N_n \longrightarrow L \longrightarrow 0$$

and note that $\varprojlim M_n \in \mathcal{M}$. For the first infinite ordinal w, we have the following commutative diagram:

with exact rows and let $g_{nw}: N_w \longrightarrow N_n$ be the obvious maps. We have $\operatorname{Im}(g_{0n}) \subsetneq \operatorname{Im}(g_{0w})$ for all $n \in \mathbb{N}$; otherwise there exist $n \in \mathbb{N}$ such that $\operatorname{Im}(g_{0n}) = \operatorname{Im}(g_{0w})$. Choose $x \in \operatorname{Im}(g_{0n+1}) \setminus \operatorname{I}(g_{0n})$ then $x = g_{0n+1}(x_{n+1})$ besides $x_{n+1} = g_{n+1w}(x_w)$ so $x = g_{0n+1}g_{n+1w}(x_w) = g_{0w}(x_w) = g_{0w}(x_w) \in \operatorname{Im}(g_{0w}) = \operatorname{Im}(g_{0n})$ which is a contradiction.

does not satisfy the conclusion of the lemma, we can find a Tor-generator $0 \longrightarrow M_{w+1} \longrightarrow N_{w+1} \longrightarrow L \longrightarrow 0$ and a commutative diagram

such that $\text{Im}(g_{0w}) \subsetneq \text{Im}(g_{0w+1})$. Proceeding in this manner, given any ordinal β , we can find Tor-generator

$$0 \longrightarrow M_{\alpha} \longrightarrow N_{\alpha} \longrightarrow L \longrightarrow 0$$

for all $\alpha \leq \beta$ with $g_{0\alpha}: N_{\alpha} \longrightarrow N_0$; so that for $\lambda < \mu \leq \beta \operatorname{Im}(g_{0\lambda}) \subsetneq \operatorname{Im}(g_{0\mu})$. Hence $\operatorname{card}(N) \geq \operatorname{card}(\beta)$. Since β is arbitrary we have the required contradiction.

LEMMA 2.6. If \mathcal{M} is closed under inverse limits and if there exist a Tor-generator $0 \longrightarrow M \longrightarrow N \longrightarrow L \longrightarrow 0$ for $Tor(L,\mathcal{M})$, then there is a Tor-generator $0 \longrightarrow \bar{M} \longrightarrow \bar{N} \longrightarrow L \longrightarrow 0$ such that for any Tor-generator $0 \longrightarrow M^* \longrightarrow N^* \longrightarrow L \longrightarrow 0$ and any commutative diagram

g must be projective.

PROOF. By lemma 2.5, there exist a Tor-generator $0 \longrightarrow M_1 \longrightarrow N_1 \longrightarrow L \longrightarrow 0$ such that, in any commutative diagram.

with exact rows and $M^*, N^* \in \mathcal{M}$, we have $\operatorname{Im}(g) = \operatorname{Im}(gh)$. So, for each $n \in \mathbb{N}$, we can find a Tor-generator $0 \longrightarrow M_n \longrightarrow N_n \longrightarrow L \longrightarrow 0$ such that for any Tor-generator $0 \longrightarrow M^* \longrightarrow N^* \longrightarrow L \longrightarrow 0$ and any commutative diagram

we have $\operatorname{Im}(g_{nn+1}h^*) = \operatorname{Im}(g_{nn+1})$. Now let w be the first infinite ordinal number. We have the commutative diagram

where $g_{nw}: N_w \longrightarrow N_n$ are obvious maps. We claim that the above Torgenerator must have the desired property. In the commutative diagram

h must be projective. Otherwise, there exist $x_w \in N_w \setminus \text{Im}(h)$. $g_{n+1w}(x_w) = x_{n+1}, x_{n+1} \in N_{n+1}$. Now $g_{nn+1}(x_{n+1}) = x_n$ and $x_n \in \text{Im}(g_{nn+1}) = \text{Im}(g_{nn+1} \circ h^*)$ so there is an $x^* \in N^*$ such that $g_{nn+1}h^*(x^*) = x_n$. Since the diagram

$$\begin{array}{ccc}
N^* & \xrightarrow{h} & N_w \\
h^* & \searrow & \downarrow^{g_{n+1}w} \\
& & N_{n+1}
\end{array}$$

is commutative, so $h(x^*) = x_w$ and $x_w \in \text{Im}(h)$ which is a contradiction.

Lemma 2.7. Let \mathcal{M} be closed under inverse limits. If $0 \longrightarrow M \longrightarrow N \longrightarrow L \longrightarrow 0$ is a Tor-generator having the property stated in the previous lemma, then it is a maximal Tor-generator.

The proof is the dual of the lemma 2.2.5 of [7], replacing generator by Tor-generator, minimal by maximal and changing the direction of arrows.

THEOREM 2.8. Assume that \mathcal{M} is closed under extensions and inverse limits. For a given R-module L, if $Tor(L, \mathcal{M})$ has a Tor-generator, then \mathcal{M} admits an ${}^{\mathsf{T}}\mathcal{M}$ -co(pre)cover whenever $L \in \mathcal{M}$.

PROOF. By Theorem 2.4, we have a maximal Tor-generator $0 \longrightarrow M \longrightarrow K \longrightarrow L \longrightarrow 0$ for $Tor(L, \mathcal{M})$. By proposition 2.3, $K \in ^{\mathsf{T}} \mathcal{M}$. Since Tor(L, K') = 0 for all $K' \in ^{\mathsf{T}} \mathcal{M}$, tensoring the above exact sequence by K', gives an exact sequence. So $M \longrightarrow K$ is an $^{\mathsf{T}}\mathcal{M}$ -coprecover. Now by maximality of tor-generator, we deduce that $M \longrightarrow K$ is a cocover.

REMARK. A coprecover is called a cocover, if any endomorphism f of X with $\varphi = f\varphi$ always implies, f an auto morphism where φ is the same homomorphism in 1.3.

THEOREM 2.9. Every R-module has a projective cocover.

PROOF. If we set $\mathcal{M} = \mathcal{C}$ in Theorem 2.4, then ${}^{\mathsf{T}}\mathcal{C} = \mathcal{P}$. For any R-module L there is an exact sequence $0 \longrightarrow M \longrightarrow P \longrightarrow L \longrightarrow 0$ with $M \in \mathcal{C}$ and $P \in \mathcal{P}$. This exact sequence provides a Tor-generator for $Tor(L, \mathcal{M})$. So by Theorem 2.8, we are done.

To prove the existence of cotorsion copre covers we just need the following propositions which are proved exactly in [4].

PROPOSITION 2.10. Every R-module is a pure submodule of a pure injective R-module.

PROPOSITION 2.11. Every pure injective R-module is cotorsion.

REMARK. An R-module M is cotorsion if $\operatorname{Ext}^1(F,M)=0$ for all flat R-modules F. A submodule T of N is a pure submodule if $0\longrightarrow A\otimes T\longrightarrow A\otimes N$ is exact for all R-module A. And M is pure injective if for every pure exact sequence $0\longrightarrow T\longrightarrow N$ $\operatorname{Hom}(N,M)\longrightarrow \operatorname{Hom}(T,M)\longrightarrow 0$ is exact.

THEOREM 2.12. Every R-module has a cotorsion coprecover.

PROOF. Let M be an arbitrary R-module by proposition 2.10 there is a pure injective R-module N such that $0 \longrightarrow M \longrightarrow N$ is pure exact. Besides by proposition 2.11 N is cotorsion. Now if, $M \longrightarrow N'$ is a homomorphism with N' cotorsion, then $0 \longrightarrow M \otimes N' \longrightarrow N \otimes N'$ is exact. So $M \longrightarrow N$ is a coprecover of M.

References

- [1] K. D. Akinci and R. Alizadeh, Special precovers in Cotorsion theoreis Proc. Edinb. Math. Soc.(2) 2002.
- [2] M. H. Bijan-Zadeh, Torsion theories and local Cohomology over commutative Noetherian rings, J. London Math. Soc.(2) 19 (1979), no. 2.
- [3] M. P. Brodman and R. Y. Sharp, Local cohomology, Cammbridge University Press, 1998.
- [4] E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter, 2000.
- [5] J. Trlifaj, Covers, envelopes, and Cotorsion theoreis, Lecture Notes for the Workshop, "Homological methods in modules theory", Cortona, 2000.
- [6] J. Rotman, Notes on Homological Algebras, Reinhold, 1970.
- [7] J. Xu, Flat covers of modules, Lecture Notes of Mathematics 1996, no. 1634.

M. Golriz

Science and Research Branch

Islamic Azad University

Iran

E-mail: Golriz@azad.ac.ir

M. H. Bijanzadeh

Faculty of Mathematical Sciences and Computer Engineering

Teacher Training University

Iran

E-mail: bijan@pnu.ac.ir