Commun. Korean Math. Soc. 20 (2005), No. 2, pp. 209-219

ON TOR-TORSION THEORIES

M. GoLriz AND M. H. B1JANZADEH

ABSTRACT. Tor-torsion theory was defined by Jan Trlifaj in 2000.
In this paper we introduce the notion of Co envelopes, CoCovers
and Tor-generators as dual of envelopes, covers and generators in
cotorsion(Ext-torsion) theory and deduce that each R-module has
a projective and a cotorsion coprecover.

0. Introduction

Let C denote the class of all R-modules where R is a commutative
Noetherian ring with identity. For a class S of R-modules, we put:

ST={N € C|Torf{(S,N) =0, Vs € S}
and

TS = {N € C| Torf(NV,8) =0, Vs € S}.
Throughout we use A, B to denote the classes of R-modules such that
A=TB, B= AT, and we call (A, B) a Tor-torsion theory.

ExaMPLE. (C,P) and (C,F) where P is the class of all projective
R-modules and F is the class of all flat R-modules, are examples of
Tor-torsion theories.

1. Properties of tor-torsion theories

PropoSITION 1.1. With the above notations, Both A and B are
closed under extensions, direct products and direct limits.

PRrROOF. We just prove that A is closed under extensions. The other
parts are proved in [6, Theorem 8.10, 8.11].
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Let 0 — M — N — L — 0 be an exact sequence of R-modules
such that M and L are in A; then we have the following exact sequence.
-+ — Tory; (M, F) — Tor; (N, F) — Tor1(L,F) — - --
since Tor1 (M, F) = Tor; (L, F) = 0 VF € B. So is the Tor; (N, F); hence
A is closed under extension. O

PROPOSITION 1.2. The following conditions are equivalent:

(i) Torz(A,B) =0, for all A in A and all B in B.
(ii) For each exact sequence 0 — X —Y — Z — 0 with Y, Z in
B(in A) we have X € B(X € A).

PRrROOF. (i)—(ii) We have the long exact sequence
---Torg(A, Z) — Tor1(A,X) — Tor (4,Y) — ---

since Y € B; Tor1(A,Y) = 0. Also by hypothesis Tora(A,Z) = 0. It
therefore follows that Tor1(A,X) =0 and so X € B.

(ii)—(i) Let 0 — K — P — Z — 0 be an exact sequence with
P projective and Z € B. Then we have the exact sequence

-+ — Tory(A, P) — Tors(A, Z) — Tor1(A, K) — Tori1(A, P) — .

But Torz(A, P) = Tor;(A, K) = 0; hence Tory(A4,Z) =0 for all A € A
and all Z € B. O

DEFINITION 1.3. Let X be a class of R-modules which is closed under
extensions. Then for X € X, M € C;

(i) An R-homomorphism ¢ : X — M is called an X-copreenvelope

of M if, for each X’ € X, the following sequence is exact:
0— XX —XoM

(ii) An R-homomorphism ¢ : M — X is called an X-coprecover if,
for each X', the following sequence is exact:

0—X' oM — X' 3X.
DEFINITION 1.4. The class (A, B) is said to have enough injectives
if, for every module M, there is an exact sequence
0—M-—B—05A—0

with A€ A, B € B.
Also we say that (A, B) has enough projectives if, for every module
M, there is an exact sequence

0—A—B—M-—0
with A€ A, B € B.
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PRrROPOSITION 1.5. Let the situation be as in 1.4 then f : M — B
of the exact sequence

0—M-—B—A4—290

is a B-coprecover of M.

Proor. Let f' : M — B’, with B’ € B, be an arbitrary R-
homomorphism. Then we have the exact sequence:

0="Tor;(4,B)— M®B —B®B — A® B' — 0. U

Note that if 0 — A — B — M — 0 is as in the definition then
it may not be a B-copre envelope of M.

ProOPOSITION 1.6. If ¢ : M — X is injective with X € X and
D = coker(¢) €7 X, then ¢ is an X-copercover, such a coprecover is
called a special X -coprecover of M.

PROOF. If0 — M -2 X — D — 0 is exact, then for all
¢+ M — X' the sequence 0 = Tor; (X', D) — AQM — A® X is
exact; so by definition, ¢ : M — X is X-coprecover of M. O

NOTE. (i) We can define a special X-Copre envelope but in this case
it is not necessarily an X-copre envelope.

(i) Let M -2, N be injective. M is a pure submodule of N if and
only if D = coker(¢) €7 C or D is flat.

COROLLARY 1.7. If D = coker(¢), where ¢ : M — N is injective.
Then D €T X ifandonly if) —m X Q@M — XN — X QD —0
is exact for all x € X.

2. Generators and tor-generators

One can define a generator and a minimal generator for 7or(L, M)
as like as which is defined for Ext(L, M) see [7].

Proposition 2.1. Let £ be a class of R-modules which is closed under
extensions, and 0 — M — K — L — 0 is a minimal generator for
Tor(L,M) then K € LT7.
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Proor. For any L € L, consider an arbitrary extension of K by L,
say 0 — K — N — L — 0. Using a pushout diagram:

0 0

6 —— M — K — L — 0

since L and L are in £, P is in £. Next, since 0 — M — K —
L — 0 is a generator, there are homomoprhism h,l, making diagram
commutative. So the middle column is split. Therefore hf : K — K is
an automorphism. So, hf ® 17 : K ® L — K ® L is an automorphism.
Now we can write the following exact sequence:

0o—K-L N K —0
By tensoring this exact sequence with L, we get the exact sequence:
. — Tory(K,L) - K®L—N®L-—>K®L—0.
And so Tor; (K, L) = 0. Hence K €7 L. O

We can establish the results concerning 7 or(£, M) by using the same
arguments which applied to £xt(L, M) as wrote in [7].

Now we want to define Tor-generators for Tor(L, M).

DEFINITION 2.2. Let M be a class of R-modules, an extension 0 —
M — N — L — 0 with M € M, is called a Tor-generator for
Tor(L, M) if for any extension 0 — M — N — L — 0 there is a
commutative diagram:

0O — M — N — L — 0
| | |
0 — M — N — L — 0
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Furthermore, such a Tor-generator is said to be maximal if any commu-
tative diagram

0 — M — N — L — 0

I

I
0O — M — N — L — 0
always implies that f is an automorphism (so that g is too).

Note. If 0 — M — N — L — 0 is a Tor-generator for
Tor(L, M) and

0 — M — N — L — 0

L

O — M — N — L — 0

is a commutative diagram with exact rows and M’ € M, then 0 —
M’ — N’ — L — 0 is also a Tor-generator.

EXAMPLE. Any exact sequence 0 — M — P — L — 0 with P
projective is a Tor-generator for Tor(L, M). Moreover if P is projective
cover of L, then it is a maximal Tor-generator.

PROPOSITION 2.3. If M is closed under extensions and 0 — M —
K — L — 0 is a maximal Tor-generator for Tor(L, M), then K €7

M.

PROOF. For any M € M, consider an arbitrary extension of M by
K,say 0 — M — N — K — 0. Then we can write:

0 0
M = M

0 — G — N — L — 0
h ! |
0O - M — K — L — 0

since M, M arein M, sois G. But0 — M — K — L — 0 is
a Tor-generator. So there are homomorphisms A, making the diagram
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commutative. Since Tor-generator is maximal (hf),(gl) are automor-
— ql®1n _

phisms. Now gl : K — K induces automorphism K ® M 98y K@M.

If we tensor the exact sequence 0 — K — N — K — 0 by M,

then we obtain an exact sequence; so Tor;(K, M) = 0 for all M € M.
Hence K €T M. O

THEOREM 2.4. Let M be closed under inverse limits. For an R-
module L, if Tor(L, M) has a Tor-generator, it must have a maximal
Tor-generator.

For the proof of this theorem, we need the following lemmas:
LEMMA 2.5. Let M be closed under inverse limits. If 0 — M —

N — L — 0 is a Tor-generator for Tor(L, M), then there is a Tor-
generator 0 — M — N — L — 0 and the commutative diagram

0O — M — N — L — 0

|

0O — M — N — L — 0

such that for any Tor-generator 0 — M* — N* — L — 0 and any
commutative diagram

O — M* — N* — L — 0

ol
o — M — N — L — 0
|7 v

O — M — N — L — 0

with exact rows, we have Im(h) = Im(hg).

Proor. We try to derive a contradiction by assuming that such a
Tor-generator does not exist.

Put My = M and Ny = N. By assumption there exsit a Tor-
generator 0 — M; — Ny — L — 0 such that in the commutative
diagram

0~—>M1—>N1—->L—>0

RN

0 — My — Ny — L — 0
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go1 is not projective. By assumption again 0 — M; — N1 — L —
0 does not satisfy the desired property. In other words, there is a Tor-
generator 0 — My — Ny — L — 0 and

O—’M2—>N2——>L——>O

Lol

0——"M1-——>N1—>L——>O

such that Im(go1) & Im(goz), where go2 = go1 © g12. By repeting the
same process, for each n € N, we can find a Tor-generator 0 — M, —
N,, — L — 0 and homomorphism g;, for all ¢ < n such that for any
k<m <n, gkn = gkm © gmn and

Im(go1) G Im(go2) G Im(go3) C--- C N

so card(Z') < card(N).
We wish to demonstrate that the cardinality of N must be grater
than that of any ordinal number 3. Consider the exact sequence

0 — limM, —1limN, —L—0
pa— P

and note that lim M,, € M. For the first infinite ordinal w, we have the
following commutative diagram:

O — My, — N, — L — 0

|

0 — lmM, — lmN, — L — 0
P -

with exact rows and let gn, : Ny — N, be the obvious maps. We
have Im(gon) G Im(gow) for all n € N; otherwise there exist n €
N such that Im(go,) = Im(goy). Choose z € Im(gon+1)\1(gon) then
T = gOn+1(mn+1) besides Tp41 = gn—Hw(mw) S0 r = gOn+1gn+1w(xw) =
90w (Tw) = Gow(Zw) € Im(gow) = Im(go,) which is a contradiction.

Since

| Ll

O — M — N — L — 0

does not satisfy the conclusion of the lemma, we can find a Tor-generator
0 — Mys1 — Nytr1 — L — 0 and a commutative diagram

0 — Myt1 — Nyyx — L — 0

I | i
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such that Im(go,) ; Im(gow+1). Proceeding in this manner, given any
ordinal 3, we can find Tor-generator

0—M,— N,—L—0

for all a < f with goo : No — No; so that for A < p < 6 Im(gor) G
Im(go,). Hence card(N) > card(8). Since § is arbitrary we have the
required contradiction. O

LEMMA 2.6. If M is closed under inverse limits and if there exist
a Tor-generator 0 — M — N — L — 0 for Tor(L, M), then
there is a Tor-generator 0 — M — N — L — 0 such that for
any Tor-generator 0 — M* — N* — L — 0 and any commutative
diagram

0O — M* — N* — L — 0

| o

0 — M — N — L — 0
g must be projective.

PROOF. By lemma 2.5, there exist a Tor-generator 0 — M; —
N; — L — 0 such that, in any commutative diagram:.

0O — M* — N* — L — 0

Ll

0O — My — N — L — 0

|

O — M — N — L — ¢

with exact rows and M* N* € M, we have Im(g) = Im(gh). So, for
each n € N, we can find a Tor-generator 0 — M,, — N, — L — 0
such that for any Tor-generator 0 — M* — N* — L — 0 and any
commutative diagram

O — M* — N — L — 0

[ I

0—’Mn+1_"n+1-"L"-’O

! o

0O — M, — N, — L — 0
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we have Im(gnn+1h*) = Im(gnn+1). Now let w be the first infinite ordinal
number. We have the commutative diagram

| ]

0——%£ir_nMn——>li£1Nn——>L-—>0

where gpny : Ny — N, are obvious maps. We claim that the above Tor-
generator must have the desired property. In the commutative diagram

0O — M — N* — L — 0

| o

0O —— My — N, — L — ¢

h must be projective. Otherwise, there exist z,, € N\ Im(h). gns1uw(zy)
= Tpt1, Tnyl € Npy1. Now gnn+1(-75n+l) =z, and z, € Im(gnn+1) =
Im(gnns10h*) so there is an 2* € N* such that gppi1h*(z*) = z,. Since
the diagram

h

N* — Ny
N lgnﬂw
Ny
is commutative, so h(z*) = x,, and z,, € Im(h) which is a contradiction.

O

LEMMA 2.7. Let M be closed under inverse limits. If 0 — M —
N — L — 0 is a Tor-generator having the property stated in the
previous lemma, then it is a maximal Tor-generator.

The proof is the dual of the lemma 2.2.5 of [7], replacing generator
by Tor-generator, minimal by maximal and changing the direction of
arrows.

THEOREM 2.8. Assume that M is closed under extensions and in-
verse limits. For a given R-module L, if T or(L, M) has a Tor-generator,
then M admits an YT M-co(pre)cover whenever L € M.

ProoF. By Theorem 2.4, we have a maximal Tor-generator 0 —
M — K — L — 0 for Tor(L,M). By proposition 2.3, K €T
M. Since Tor(L,K') = 0 for all K’ €T M, tensoring the above exact
sequence by K’, gives an exact sequence. So M — K is an TM-
coprecover. Now by maximality of tor-generator, we deduce that M —
K is a cocover. O
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REMARK. A coprecover is called a cocover, if any endomorphism f
of X with ¢ = f¢ always implies, f an auto morphism where ¢ is the
same homomorphism in 1.3.

THEOREM 2.9. Every R-module has a projective cocover.

ProOOF. If we set M = C in Theorem 2.4, then 7C = P. For any
R-module L there is an exact sequence ) — M — P — L — 0
with M € C and P € P. This exact sequence provides a Tor-generator
for Tor(L, M). So by Theorem 2.8, we are done. a

To prove the existence of cotorsion copre covers we just need the
following propositions which are proved exactly in [4].

PROPOSITION 2.10. Every R-module is a pure submodule of a pure
injective R-module.

PROPOSITION 2.11. Every pure injective R-module is cotorsion.

REMARK. An R-module M is cotorsion if Ext!(F, M) = 0 for all
flat R-modules F'. A submodule T of N is a pure submodule if 0 —
A®T — A®N is exact for all R-module A. And M is pure injec-
tive if for every pure exact sequence 0 — T' — N Hom(N, M) —
Hom(T, M) — 0 is exact.

THEOREM 2.12. Every R-module has a cotorsion coprecover.

PRrROOF. Let M be an arbitrary R-module by proposition 2.10 there
is a pure injective R-module N such that 0 — M — N is pure exact.
Besides by proposition 2.11 N is cotorsion. Now if, M — N’ is a
homomorphism with N’ cotorsion, then 0 — M @ N — N ® N’ is
exact. So M — N is a coprecover of M. O
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