Bull. Korean Math. Soc. **46** (2009), No. 5, pp. 867–871 DOI 10.4134/BKMS.2009.46.5.867

INDEPENDENTLY GENERATED MODULES

Muhammet Tamer Koşan and Tufan Özdin

ABSTRACT. A module M over a ring R is said to satisfy (P) if every generating set of M contains an independent generating set. The following results are proved;

(1) Let $\tau = (\mathbb{T}_{\tau}, \mathbb{F}_{\tau})$ be a hereditary torsion theory such that $\mathbb{T}_{\tau} \neq$ Mod-*R*. Then every τ -torsionfree *R*-module satisfies (*P*) if and only if $S = R/\tau(R)$ is a division ring.

(2) Let \mathcal{K} be a hereditary pre-torsion class of modules. Then every module in \mathcal{K} satisfies (P) if and only if either $\mathcal{K} = \{0\}$ or $S = R/\operatorname{Soc}_{\mathcal{K}}(R)$ is a division ring, where $\operatorname{Soc}_{\mathcal{K}}(R) = \cap \{I \leq R_R : R/I \in \mathcal{K}\}.$

For a right *R*-module *M*, a subset *X* of *M* is said to be a generating set of *M* if $M = \sum_{x \in X} xR$; and a minimal generating set of *M* is any generating set *Y* of *M* such that no proper subset of *Y* can generate *M*. A generating set *X* of *M* is called an *independent generating set* if $\sum_{x \in X} xR = \bigoplus_{x \in X} xR$. Clearly, every independent generating set of *M* is a minimal generating set, but the converse is not true in general. For example, the set $\{2,3\}$ is a minimal generating set of $\mathbb{Z}_{\mathbb{Z}}$ but not an independent generating set.

It is well-known that every generating set of a right vector space over a division ring contains a minimal generating set (or a basis). This motivated various interests in characterizing the rings R such that every module in a certain class of right R-modules contains a minimal generating set, or every generating set of each module in a certain class of right R-modules contains a minimal generating set (see, for example, [2], [8], [9], [11]).

In [2, Theorem 2.3], the authors proved that R is a division ring if and only if every R-module has a basis if and only if every irredundant subset of an R-module is independent. This result can be considered in a more general context of a torsion theory. For an R-module M, M is said to satisfy (P) if every

O2009 The Korean Mathematical Society

867

Received July 13, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 16D10.

Key words and phrases. generated set for modules, basis, (non)-singular modules, division ring, torsion theory.

The content of this paper is a part of a thesis written by Tufan Özdin under the supervision of M. Tamer Koşan (Gebze Institute of Technology).

generating set of M contains an independent generating set. For a hereditary torsion theory $\tau = (\mathbb{T}_{\tau}, \mathbb{F}_{\tau})$, the paper is concerned with the following questions:

- (1) When does every τ -torsion module satisfy (P)?
- (2) When does every τ -torsionfree module satisfy (P)?

Throughout this paper R denotes an associative ring with unit and M is a right unitary R-module. For a module M, the notions " \leq ", "Soc(M)", " x^{\perp} ", and "Z(M)" denote the submodule, the socle, the right annihilator of an element x, and the singular submodule of M, respectively. Moreover, $Z_2(M)$ is defined by $Z(M/Z(M)) = Z_2(M)/Z(M)$. If $M = Z_2(M)$, we say that M is Goldie torsion. If Z(M) = 0, then M is called nonsingular. A module is called *quasi-cyclic* if each of its finitely generated submodules is contained in a cyclic submodule (see [7]). According to Bass [3], for a sequence $\{a_n : n = 1, 2, \ldots\}$ of elements of R, let F the free R-module with basis x_1, x_2, \ldots, G the submodule of F generated by the set $\{x_n - a_n x_{n+1} : n = 1, 2, \ldots\}$, and $[F, \{a_n\}, G]$ the quotient module F/G. Note that $[F, \{a_n\}, G]$ is a quasi-cyclic module.

We will refer to [1], [4] and [6] for all undefined notions used in the text.

We begin with the following easy but useful lemma.

Lemma 1. Let xR, yR be nonzero cyclic R-modules with $x^{\perp} \neq y^{\perp}$, and let $M = xR \oplus xR \oplus yR \oplus yR$. Then there is a submodule N of M such that N does not satisfy (P).

Proof. Without loss of generality, we may assume that $x^{\perp} \not\subseteq y^{\perp}$. Let u = (x, x, y, 0) and v = (0, x, y, 0), and let N be the submodule of M generated by $\{u, v\}$. Since $u \notin vR$ and $v \notin uR$, $\{u, v\}$ is a minimal generating set of N. But $\{u, v\}$ is not an independent generating set of N since $0 \neq (0, 0, yx^{\perp}, 0) \subseteq uR \cap vR$. Therefore, the generating set $\{u, v\}$ does not contain any independent generating sets of N.

Theorem 2. Let $\tau = (\mathbb{T}_{\tau}, \mathbb{F}_{\tau})$ be a hereditary torsion theory such that $\mathbb{T}_{\tau} \neq Mod$ -R. The following are equivalent for a ring R:

- (1) Every R-module satisfies (P).
- (2) $\tau(R) = 0$ and every τ -torsionfree module satisfies (P).
- (3) R is a division ring.

Proof. $(3) \Rightarrow (1)$. It is well-known.

(1) \Rightarrow (2). Suppose $0 \neq a \in \tau(R)$. If $a^{\perp} = 0$, then $R_R \cong aR \in \mathbb{T}_{\tau}$. Thus, $R \in T_{\tau}$, implying Mod- $R = \mathbb{T}_{\tau}$. This contradicts the assumption on τ . Hence, ab = 0 for some $0 \neq b \in R$. Therefore, by Lemma 1, the module $aR \oplus aR \oplus R \oplus R$ has a submodule N such that N does not satisfies (P). This contradiction shows that $\tau(R_R) = 0$.

 $(2) \Rightarrow (3)$. Suppose R satisfies (2). First we claim that, for any τ -torsionfree module M with $x \in M$ and $r \in R$, xr = 0 implies that x = 0 or r = 0.

For, if not, by Lemma 1, the τ -torsionfree module $xR \oplus xR \oplus R \oplus R$ has a submodule N such that N does not satisfies (P). This is a contradiction. In particular, our claim implies that R is a domain. Suppose R is not a division ring. Then $aR \neq R$ for some $0 \neq a \in R$. Let $a_n = a$ for $n = 1, 2, \ldots$, let F be the free R-module with basis $\{x_n : n = 1, 2, ...\}$, and G the submodule of F generated by the set $\{x_n - x_{n+1}a_n : n = 1, 2, ...\}$. Set H = F/G. If $\overline{x_1} = x_1 + G \in \tau(H_R)$, then, since R is not in \mathbb{T}_{τ} , $\overline{x_1}c = \overline{0}$ for some nonzero element $c \in R$. But it is straightforward to check that this is impossible. Therefore, $\overline{x_1} \notin \tau(H)$. So $H/\tau(H)$ is a nonzero τ -torsionfree module. Note that $\{\overline{x_n} + \tau(H) : n = 1, 2, ...\}$ is a generating set of $H/\tau(H)$. By (2), there is a nonempty set L of positive integers such that $\{\overline{x_n} + \tau(H) : n \in \mathbf{L}\}$ is an independent generating set of $H/\tau(H)$. Let m be the least number in L. Note that $\overline{x_m} + \tau(H) = [\overline{x_{m+k}} + \tau(H)]a^k$ for $k = 1, 2, \dots$ It must be $\mathbf{L} = \{m\}$, i.e., $H/\tau(H)$ is generated by $\overline{x_m} + \tau(H)$. Therefore, $\overline{x_{m+1}} + \tau(H) = [\overline{x_m} + \tau(H)]r$ for some $r \in R$, i.e., $[\overline{x_{m+1}} + \tau(H)](1 - ar) = \overline{0} (= \overline{0} + \tau(H))$. Now by the claim above, $\overline{x_{m+1}} + \tau(H) = \overline{0}$ or 1 - ar = 0. Since $\overline{x_1} \notin \tau(H)$, we have $\overline{x_{m+1}} \notin \tau(H)$, and thus 1 - ar = 0, i.e., aR = R. This is a contradiction.

Applying Theorem 2 to the Goldie torsion theory τ yields the next corollary.

Corollary 3. The ring R is a division ring if and only if R is right non-singular and every non-singular R-module satisfies (P).

Let $S = R/\tau(R)$ be the factor ring and $\gamma : R \longrightarrow S$ be the canonical ring homomorphism. Then γ induces a hereditary torsion theory $\sigma = \gamma_{\#}(\tau)$ on Mod-S defined by the condition that an S-module N is a σ -torsion S-module if and only if N_R is a τ -torsion module (see [5, p. 433]).

Theorem 4. Let $\tau = (\mathbb{T}_{\tau}, \mathbb{F}_{\tau})$ be a hereditary torsion theory such that $\mathbb{T}_{\tau} \neq Mod$ -R. Then every τ -torsionfree R-module satisfies (P) if and only if $S = R/\tau(R)$ is a division ring.

Proof. " \Rightarrow ". Since R is not in \mathbb{T}_{τ} and $\tau(R/\tau(R)) = 0$, S is nonzero and $\sigma(S) = 0$. Let N_S be a σ -torsionfree module with a generating set Y. Then N is a τ -torsionfree R-module with a generating set Y. By the assumption, $N_R = \bigoplus_{x \in X} xR$ for a subset X of Y. It follows that $N_S = \bigoplus_{x \in X} xS$. By Theorem 1, S is a division ring.

" \Leftarrow ". Let N be a τ -torsionfree R-module with a generating set Y. Since $N\tau(R) \subseteq \tau(N)$, we see $N\tau(R) = 0$. Thus, N is an S-module and hence is a σ -torsionfree module with a generating set Y. Since S is a division ring, by Theorem 2, we have $N_S = \bigoplus_{x \in X} xS$ for a subset X of Y. Thus, $N_R = \bigoplus_{x \in X} xR$.

When τ is the Goldie torsion theory, Theorem 4 gives the next consequence.

Corollary 5. Every nonsingular *R*-module satisfies (*P*) if and only if $R = Z_2(R)$ or $R/Z_2(R)$ is a division ring.

Let \mathcal{K} be a hereditary pre-torsion class of modules and $\operatorname{Soc}_{\mathcal{K}}(R) = \cap \{I : I \in H_{\mathcal{K}}(R)\}$, where $H_{\mathcal{K}}(R) = \{I \subseteq R_R : R/I \in \mathcal{K}\}$. The notation is taken from [4]. By the proof of Theorem 2.5 in [12], $\operatorname{Soc}_{\mathcal{K}}(R)$ is a two-sided ideal of R. If $\mathcal{K} = \{ \text{ singular } R\text{-modules } \}$, then $\operatorname{Soc}_{\mathcal{K}}(R)$ is just the socle of R.

Theorem 6. Let \mathcal{K} be a hereditary pre-torsion class of modules. Then every module in \mathcal{K} satisfies (P) if and only if either $\mathcal{K} = \{0\}$ or $S = R/\operatorname{Soc}_{\mathcal{K}}(R)$ is a division ring.

Proof. " \Rightarrow ". If $0 \neq R/I_i \in \mathcal{K}$ for i = 1, 2, then Lemma 1 implies that $I_1 = I_2$. So, either $\operatorname{Soc}_{\mathcal{K}}(R) = R$ or $\operatorname{Soc}_{\mathcal{K}}(R)$ is a maximal right ideal of R. Therefore, $\mathcal{K} = \{0\}$ or S is a division ring.

" \Leftarrow ". If $\mathcal{K} = \{0\}$, then the claim follows. Suppose that S is a division ring and $\mathcal{K} \neq \{0\}$. This shows that $H_{\mathcal{K}}(R) = \{\operatorname{Soc}_{\mathcal{K}}(R), R\}$. Then, for any module $M \in \mathcal{K}$ with a generating set $Y, M \cdot \operatorname{Soc}_{\mathcal{K}}(R) = 0$ and thus M is an S-module with a generating set Y. By Theorem 2, $M_S = \bigoplus_{x \in X} xS$ for a subset X of Y. It follows that $M_R = \bigoplus_{x \in X} xR$.

Letting \mathcal{K} be the class of the singular right *R*-modules in Theorem 6, one obtains the next corollary.

Corollary 7. Every singular R-module satisfies (P) if and only if either R is a semisimple ring or $R/\operatorname{Soc}(R)$ is a division ring.

From now on, \mathcal{K} is a hereditary pre-torsion class and $\tau_{\mathcal{K}} = (\mathbb{T}_{\mathcal{K}}, \mathbb{F}_{\mathcal{K}})$ is the torsion theory generated by \mathcal{K} , i.e., $\mathbb{F}_{\mathcal{K}} = \{F \in \text{Mod-}R : \text{Hom}(C, F) = 0 \text{ for all } C \in \mathcal{K}\}$ and $\mathbb{T}_{\mathcal{K}} = \{T \in \text{Mod-}R : \text{Hom}(T, F) = 0 \text{ for all } F \in \mathcal{K}\}$. By [10, Proposition 3.3], $\tau_{\mathcal{K}}$ is a hereditary torsion theory.

Theorem 8. Every module in $\mathbb{T}_{\mathcal{K}}$ satisfies (P) if and only if either

- (1) $\mathcal{K} = \{0\}$ or
- (2) $\mathcal{K} = \mathbb{T}_{\mathcal{K}}$ and $R / \operatorname{Soc}_{\mathcal{K}}(R)$ is a division ring.

Proof. Note that $\mathcal{K} = \{0\}$ if and only if $\mathbb{T}_{\mathcal{K}} = \{0\}$. Thus the sufficiency follows from Theorem 6. For the necessity, by Theorem 6, it suffices to show that $\mathcal{K} = \mathbb{T}_{\mathcal{K}}$. If the equality does not hold, then there exists a module $M \in \mathbb{T}_{\mathcal{K}}$ but $M \notin \mathcal{K}$. Therefore, there is a cyclic submodule xR of M such that $xR \notin \mathcal{K}$. Since $\mathcal{K} \neq \{0\}$, there is a nonzero cyclic module $yR \in \mathcal{K}$. Then $x^{\perp} \neq y^{\perp}$. By Lemma 1, this contradicts the assumption. So $\mathcal{K} = \mathbb{T}_{\mathcal{K}}$.

Let \mathcal{K} be the class of the singular right *R*-modules. Applying Theorem 8 to \mathcal{K} yields the next corollary.

Corollary 9. Every Goldie torsion module satisfies (P) if and only if either R a semisimple ring or R is a right non-singular ring with $R/\operatorname{Soc}(R)$ being a division ring.

Acknowledgment. We thank to Prof. Yiqiang Zhou (Memorial University, Canada) for introducing us to this problem, and for his valuable comments and suggestions.

870

References

- F. W. Anderson and K. R. Fuller, Rings and Categories of Modules (Second edition), Graduate Texts in Mathematics, 13. Springer-Verlag, New York, 1992.
- [2] D. D. Anderson and J. Robeson, Bases for modules, Expo. Math. 22 (2004), no. 3, 283–296.
- H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488.
- [4] J. Dauns and Y. Zhou, Classes of Modules, Pure and Applied Mathematics (Boca Raton), 281. Chapman & Hall/CRC, Boca Raton, FL, 2006.
- [5] J. S. Golan, *Torsion Theories*, Pitman Monographs and Surveys in Pure and Applied Mathematics, 29. Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1986.
- [6] K. R. Goodearl, Ring Theory: Nonsingular Rings and Modules, Pure and Applied Mathematics, No. 33. Marcel Dekker, Inc., New York-Basel, 1976.
- [7] J. Neggers, Cyclic rings, Rev. Un. Mat. Argentina 28 (1977), no. 2, 108-114.
- [8] W. H. Rant, Minimally generated modules, Canad. Math. Bull. 23 (1980), no. 1, 103– 105.
- [9] L. J. Ratliff and J. C. Robson, *Minimal bases for modules*, Houston J. Math. 4 (1978), no. 4, 593–596.
- [10] B. Stenström, Rings of Quotients, Springer-Verlag, 1975.
- [11] Y. Zhou, A characterization of left perfect rings, Canad. Math. Bull. 38 (1995), no. 3, 382–384.
- [12] _____, Relative chain conditions and module classes, Comm. Algebra 25 (1997), no. 2, 543–557.

MUHAMMET TAMER KOŞAN DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE GEBZE INSTITUTE OF TECHNOLOGY ÇAYIROVA CAMPUS 41400 GEBZE- KOCAELI, TURKEY *E-mail address*: mtkosan@gyte.edu.tr

TUFAN ÖZDIN DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND LITERATURE ERZINCAN UNIVERSITY ERZINCAN, TURKEY *E-mail address*: tufan.ozdin@hotmail.com