Browse > Article
http://dx.doi.org/10.4134/BKMS.2009.46.5.867

INDEPENDENTLY GENERATED MODULES  

Kosan, Muhammet Tamer (DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE GEBZE INSTITUTE OF TECHNOLOGY)
Ozdin, Tufan (DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND LITERATURE ERZINCAN UNIVERSITY)
Publication Information
Bulletin of the Korean Mathematical Society / v.46, no.5, 2009 , pp. 867-871 More about this Journal
Abstract
A module M over a ring R is said to satisfy (P) if every generating set of M contains an independent generating set. The following results are proved; (1) Let $\tau$ = ($\mathbb{T}_\tau,\;\mathbb{F}_\tau$) be a hereditary torsion theory such that $\mathbb{T}_\tau$ $\neq$ Mod-R. Then every $\tau$-torsionfree R-module satisfies (P) if and only if S = R/$\tau$(R) is a division ring. (2) Let $\mathcal{K}$ be a hereditary pre-torsion class of modules. Then every module in $\mathcal{K}$ satisfies (P) if and only if either $\mathcal{K}$ = {0} or S = R/$Soc_\mathcal{K}$(R) is a division ring, where $Soc_\mathcal{K}$(R) = $\cap${I 4\leq$ $R_R$ : R/I$\in\mathcal{K}$}.
Keywords
generated set for modules; basis; (non)-singular modules; division ring; torsion theory;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Y. Zhou, A characterization of left perfect rings, Canad. Math. Bull. 38 (1995), no. 3, 382–384
2 F. W. Anderson and K. R. Fuller, Rings and Categories of Modules (Second edition), Graduate Texts in Mathematics, 13. Springer-Verlag, New York, 1992
3 D. D. Anderson and J. Robeson, Bases for modules, Expo. Math. 22 (2004), no. 3, 283–296
4 H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488   DOI
5 J. S. Golan, Torsion Theories, Pitman Monographs and Surveys in Pure and Applied Mathematics, 29. Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1986
6 K. R. Goodearl, Ring Theory: Nonsingular Rings and Modules, Pure and Applied Mathematics, No. 33. Marcel Dekker, Inc., New York-Basel, 1976
7 W. H. Rant, Minimally generated modules, Canad. Math. Bull. 23 (1980), no. 1, 103– 105
8 L. J. Ratliff and J. C. Robson, Minimal bases for modules, Houston J. Math. 4 (1978), no. 4, 593–596
9 B. Stenstrom, Rings of Quotients, Springer-Verlag, 1975
10 J. Dauns and Y. Zhou, Classes of Modules, Pure and Applied Mathematics (Boca Raton), 281. Chapman & Hall/CRC, Boca Raton, FL, 2006
11 J. Neggers, Cyclic rings, Rev. Un. Mat. Argentina 28 (1977), no. 2, 108–114
12 Y. Zhou, Relative chain conditions and module classes, Comm. Algebra 25 (1997), no. 2, 543–557   DOI   ScienceOn