• Title/Summary/Keyword: Pre-heating

Search Result 307, Processing Time 0.032 seconds

Development of Smart Switchgear for Versatile Ventilation Garments: Optimum Diameter and Voltage Application Unit Time of One-way Shape Memory Alloy Wire for a Bi-directional Actuator (가변 통기성 의복을 위한 스마트 개폐장치 개발: 양방향 작동 액추에이터 제작을 위한 일방향 형상기억합금 와이어의 최적 직경 및 전압인가 단위시간의 도출)

  • Kim, Sanggu;Kim, Minsung;Yoo, Shinjung
    • Science of Emotion and Sensibility
    • /
    • v.21 no.2
    • /
    • pp.137-144
    • /
    • 2018
  • The study figured out the operational conditions of a two-way movement actuator made of one-way shape memory alloy (OWSMA) for versatile ventilation intelligent garments. To develop a low-power actuator that consumes energy only when a garment changes its form such as opening and closing, multiple channels of OWSMA were used, and optimum diameter of the wires was examined. For the switch device, optimum voltage application unit time was determined. Optimum diameter of OWSMA wire was determined by applying 3.7V to the pre-determined candidate diameters, which demonstrated two-way operation in previous studies. In order to evaluate the optimum voltage application time, the internal diameter of the actuator was measured while increasing and decreasing by 50 ms from the unit time of voltage application. Delay time under two-way operation of the actuator was measured to minimize interference caused by heat between channels. Power of 3.7V was applied to OWSMA for assessment of optimal time, and the whole process from heating to cooling was video-recorded with a thermal image camera to determine the point of time at which the temperature of OWSMA wire dropped below the phase transformation temperature. The results showed that $0.4{\Phi}$ was the most suitable diameter, and the optimum unit time of voltage applied to open and close the actuator was 4100ms. It was also shown that the delay time should be more than 1.8 seconds between two-way operations of the actuator.

Tensile Test for Lap Welded Joints of Rebars(SD400) (일반철근(SD400) 용접 겹침이음 인장실험)

  • Park, Won-Tae;Chun, Kyoung-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.570-576
    • /
    • 2018
  • In reinforced concrete structures, the joints of ordinary rebars are usually lap joints, which are bound by binding wires with rebars, and mechanical joints by couplers. In domestic design standards (concrete design code), welded lap joints are restricted for ordinary rebars, but overseas standards allow welded lap joints of ordinary rebars through pre-heating. This study investigated the domestic and international standards/criteria and evaluated the fracture strength by performing the tensile test on the lap welded joint of SD400 grade rebars, which is used the most in the construction sites. The weld length of the specimen for weld lap joints is based on the minimum weld length (8d) given in the KS standard (KS B ISO 17660-1). According to AWS D1.4, the preheating temperature was set to $150^{\circ}C$ for D19 and below, and $260^{\circ}C$ for D22 and above. In the test results, the tensile strength of rebars with welded lap joints exceeded the required strength (125% of the yield strength) according to the concrete design code. To analyze the effect of preheating, the tensile strength of the welded rebars after preheating was not significantly different from that of the welded rebars without preheating. The carbon equivalent content (Ceq) of the rebars used in the test was 0.45% or less. Under AWS D1.4, no preheating is required if the carbon equivalent is less than 0.45%. All specimens with a welded lap length of 8d failed by a bar fracture. The effect of preheating was confirmed to be insignificant due to the low carbon equivalent of the rebar.

Development of Prediction Model for Nitrogen Oxides Emission Using Artificial Intelligence (인공지능 기반 질소산화물 배출량 예측을 위한 연구모형 개발)

  • Jo, Ha-Nui;Park, Jisu;Yun, Yongju
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.588-595
    • /
    • 2020
  • Prediction and control of nitrogen oxides (NOx) emission is of great interest in industry due to stricter environmental regulations. Herein, we propose an artificial intelligence (AI)-based framework for prediction of NOx emission. The framework includes pre-processing of data for training of neural networks and evaluation of the AI-based models. In this work, Long-Short-Term Memory (LSTM), one of the recurrent neural networks, was adopted to reflect the time series characteristics of NOx emissions. A decision tree was used to determine a time window of LSTM prior to training of the network. The neural network was trained with operational data from a heating furnace. The optimal model was obtained by optimizing hyper-parameters. The LSTM model provided a reliable prediction of NOx emission for both training and test data, showing an accuracy of 93% or more. The application of the proposed AI-based framework will provide new opportunities for predicting the emission of various air pollutants with time series characteristics.

A Comparative Analysis on Physico-Chemical Characteristics of MSW (Municipal Solid Waste) from Dwelling Site and Landfill Site - A Case Study of the Chungju City - (생활폐기물의 발생원과 최종 매립장에서 물리화학적 특성 비교 분석 - 충주시를 중심으로 -)

  • Cho, Byungyeol;Yeon, Ikjun;Lee, Byungchan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.3
    • /
    • pp.47-52
    • /
    • 2009
  • The comparative analysis on physico-chemical characteristics of municipal solid waste from dwelling site and landfill site were performed to provide the fundamental information of waste management in Chungju city. It was analysed and evaluated the bulk density, physical component, three major component, chemical component, and heating value of MSW. The physical components depended on the sampling site in dwelling site and landfill site. But, by the ultimate analysis, the chemical composition was almost similar to result for municipal solid waste from dwelling site and landfill site. Therefore, it is necessary to investigate the physical components according to sampling site for the MBT to introduce for combustible municipal solid waste pre-treatment, but it needs the chemical composition from landfill site to design the incinerator. The physical composition showed that the combustible and the noncombustible occupied 87.4% and 12.6% respectively. In case of three component analysis, the moisture, the combustible, and the ash were 27.6, 60.5, 11.9% respectively. The chemical composition through the element analysis were C (50.1%), H (6%), O (39.5%), N (1.9%), S (0.5%), and Cl (1.3%).

  • PDF

A Numerical Study on the Fracture Evolution and Damage at Rock Pillar Near Deposition Holes for Radioactive Waste (방사성폐기물 처분공 주변 암주에서의 균열 진전 및 손상에 대한 수치해석적 연구)

  • 이희석
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.211-221
    • /
    • 2003
  • At Aspo hard rock laboratory in Sweden, an in-situ heater experiment called "$\"{A}"{s}"{p}"{o}$ Pillar Stability Experiment (APSE)" is prepared to assess capability to predict spatting and stability in a rock mass between deposition holes for radioactive waste. To Predict reasonably fracturing process at rock pillar under a planned configuration before testing, a boundary element code FRACOD has been applied for modelling. The code has been improved to simulate explicitly fracture evolution both at rock boundaries and in intact rocks. A new inverse stress reconstruction technique using boundary element has been also developed to transfer stress field by excavation and thermal loading into the FRACOD model. This article presents the results from predictive modelling far the planned in-situ test condition. Excavation induced stresses might cause slight fracturing in the pillar walls. Typical shear fractures have been initiated and propagated near central pillar walls during 120 days of heating, but overall rock mass remained stable under the considered configuration. The effects of pre-existing joints and properties of fractures are also discussed. It is found from the results that FRACOD can properly model essential rock spatting and propagation at deep tunnels and boreholes.at deep tunnels and boreholes.

Analysis of $CO_2$ and Harmful Gases Caused by Using Burn-type $CO_2$ Generators in Greenhouses (연소식 $CO_2$ 발생기 사용시 온실 내 $CO_2$ 및 유해가스 농도 분석)

  • Park, Jong-Seok;Shin, Jong-Wha;Ahn, Tae-In;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.177-183
    • /
    • 2010
  • Bum-type $CO_2$ generators are widely used in greenhouses for the purpose of $CO_2$ supply for photosynthesis and greenhouse heating. However harmful gases included in the air might give severe effects on the plant growth. For investigating the possible emission of harmful gases from commercial bum-type $CO_2$ generators, we carried out the analysis of the harmful by-products (NO, NOx, $NO_2$, CO, and VOCs) and $CO_2$ caused by using a bum-type $CO_2$ generator in greenhouses. And the harmful by-products from different type of fuels such as kerosene, LPG, and LNG were quantified. In order to minimize the uncertainties from a $CO_2$ generator, 4 different $CO_2$ generators were utilized in four plastic greenhouses and a glasshouse located at different places during the experimental works. The results showed that the concentration of NOx is proportional to $CO_2$ concentration. Levels of harmful gases in the most of greenhouses, where the new bum-type $CO_2$ generators were installed, were lower than 1.0 ppm when $CO_2$ concentration was set at 1,000 ppm. In case of LNG combustion, the concentration of CO reached out up to 300 ppm and pre-treatment for CO reduction, such as the adsorption process, would be inevitable to abate the adverse effects on plant growth.

A Study on Thermal Deformations of AC7A Tire Mold Casting Material by Pre-Heating Temperatures of Permanent Casting System (금형주조장치의 예열온도에 따른 타이어 몰드용 AC7A 주조재의 열변형에 관한 연구)

  • Choi, Je-Se;Choi, Byung-Hui
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2596-2603
    • /
    • 2013
  • The precision and endurance of tire mold are very important factors to decide the quality of tire. However, the investigation on the thermal deformation of tire mold has a lot of trouble because the tire mold is produced in airtight permanent casting material. In this study, the thermal deformations such as temperature, displacement and stress distributions inside the AC7A tire mold casting material were analyzed by numerical analysis according to the preheating temperature of permanent casting device. In order to verify the results of numerical analysis, the experiments for temperature measurement of the AC7A casting material were carried out under the same condition with numerical analysis. For the numerical analysis, "COMSOL Multiphysics" was used. The preheating temperatures were set up $150^{\circ}C$, $200^{\circ}C$, $250^{\circ}C$ and $300^{\circ}C$, respectively. The thermal deformations were calculated in each case. When the preheating temperature is $300^{\circ}C$, displacement and stress are the lowest with 0.25mm and 0.351GPa, but the temperature is the highest with $374.27^{\circ}C$. When the experimental results were compared with the numerical results, there were some temperature differences because of the latent heat by phase change heat transfer. However, the cooling patterns were almost similar except for the latent heat section.

Heat Exchange Performance of Improved Heat Recovery System (개량형 열회수 시스템의 열교환 성능)

  • Suh, Won-Myung;Yoon, Yong-Cheol;Kwon, Jin-Keun
    • Journal of Bio-Environment Control
    • /
    • v.12 no.3
    • /
    • pp.107-113
    • /
    • 2003
  • This study was carried out to improve the performance of pre-developed heat recovery devices attached to exhaust-gas flue connected to combustion chamber of greenhouse heating system. Four different units were compared in the aspect of heat recovery performance; A-, B-, and C-types are exactly the same with the old ones reported in previous studies. D-type newly developed in this experiment is mainly different with the old ones in its heat exchange area and tube thickness. But airflow direction(U-turn) and pipe arrangement are similar with previous three types. The results are summarized as follows; 1. System performances in the aspect of heat recovery efficiency were estimated as 42.2% for A-type, 40.6% for B-type, 54.4% for C-type, and 69.2% for D-type. 2. There was not significant improvement of heat recovering efficiency between two different airflow directions inside the heat exchange system. But considering current technical conditions, straight air flow pattern has more advantage than hair-pin How pattern (U-turn f1ow). 3. The main factors influencing on heat recovery efficiency were presumably verified to be the total area of heat exchange surface, the thickness of ail-flow pipes, and the convective heat transfer coefficient influenced by airflow velocity under the conditions of allowable pipe durability and safety. 4. Desirable blower capacity for each type of heat recovery units were significantly different to each other. Therefore, the optimum airflow capacity should be determined by considering in economic aspect of electricity required together with the optimum heat recovery performance of given heat recovery systems.

Pie-establishment of Microwave-Assisted Extraction Conditions for Antioxidative Extracts from Cabbage (양배추의 항산화성 추출물 제조를 위한 마이크로웨브 추출조건 설정)

  • Noh Jungeun;Choi You-Kyoung;Kim Hyun-Ku;Kwon Joong-Ho
    • Food Science and Preservation
    • /
    • v.12 no.1
    • /
    • pp.62-67
    • /
    • 2005
  • Microwave-assisted extraction (50 W, 2,450 MHz, MAE) with properties of selective heating and subsequent extraction for certain phytochemicals from natural materials was applied to pre-establish the extraction conditions for total yield total phenolics, and electron donating ability (EDA) from Brossica oleacea. The experiments with $50\%$ EtOH solvent showed that 20 mesh in particle size of cabbage flake $(moisture\;4.5\%)$ and 1:10 (g/mL) in the sample to solvent ratio for both raw $(moisture\;90.2\%)$ and flake cabbages were optimal for MAE efficiency. Under these conditions, total yield increased with extraction tim, which was highest for raw cabbage extract in $50\%\;EtOH$ solvent followed by $100\%\;EtOH$ and water. While that of flake cabbage extracts was highest in $50\%\;EtOH$ followed by water and $100\%\;EtOH$. The contents of total phenolics and EDA in extracts gradually increased after 3 min of MAE, which were highest when using $100\%\;EtOH$ solvent followed by $50\%\;EtOH$ and water in raw cabbage and $50\%\;EtOH$ followed by water and $100\%\;EtOH$ in flake cabbage, respectively.

Isolation of Alliin in Garlic and Its Quantitative Determination by High Performance Liquid Chromatography and Studies on the Antimicrobial Efforts of Alliin and Ethanol Extracts from Korean Garlic(Alliium sativum L.) (마늘 중 고속 액체 크로마토그래피에 의한 알린의 분리 및 정량과 Alliin과 에탄올 추출물의 항균효과에 관한 연구)

  • 위성언
    • The Korean Journal of Food And Nutrition
    • /
    • v.16 no.4
    • /
    • pp.296-302
    • /
    • 2003
  • First. the purification and analysis of alliin in garlic from different origins by alliin-HPLC determination method were studied. Allinase in garlic was inactivated by heating in boiling water followed by extraction of alliin in garlic with 80% methanol. To remove free amino acids and alliin homologs in garlic, garlic extract was separated by cation exchange column which was packed with amberlite CG-120 resin using 40L d-water as eluent. Alliin in garlic extract was crystallized in a mixture of acetone (50$^{\circ}C$):H$_2$O:acetic acid=70:29:1 and then recrystallized in a mixture of acetone (50$^{\circ}C$):H$_2$O:acetic acid=75:24:1. Obtained alliin was identified by melting point. TLC, microscope observation and mass spectrometry. High performance liquid chromatography (HPLC) following pre-column derivatization of cystein derivatives with o-phthaldialdehyde/2-mercaptoethanol has succeessfully been applied to the analysis of various garlics. Each alliic of standard solution and garlic extract was derivatized to isoindole derivative by o-phthaldialdehyde /2-mercaptoethanol and then analyzed by HPLC. Six point calibration was done by using alliin peak area. Lineality was observed at 0 ∼ 1.0mg/ml of alliin concentration. Weighted regression line function was Y=6254X - 256077. By this function, alliin contents in various garlics were 0.34 ∼ 0.73% fresh weight. Second study was designed to evaluate the effects of garlic extracts of various concentrations on the growth of various pathogenes (Eubacterium limonsum, Bacteroides fragilis, Salmonella typhimurium, Salmonella typhi, Shigella sonnei, Kiebsiella pneumoniae, Enterobacter cloacae, Pserdomonas aeruginosa, Escherichia coli). For antimicrobial effects against microorganism, totally minimal inhibition concentrations (MIC) of alliin were from 5,000 to 20,000ppm. MIC of ethanol extract were 1,250 to 10,000ppm.