• Title/Summary/Keyword: Pre-cutting

Search Result 141, Processing Time 0.026 seconds

A numerical study on the behavior of existing and enlarged tunnels when widened by applying the pre-cutting method (Pre-cutting 공법을 적용한 터널 확폭 시 기존 및 확폭터널의 거동에 관한 수치해석적 연구)

  • Kim, Han-Eol;Nam, Kyoung-Min;Ha, Sang-Gui;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.451-468
    • /
    • 2020
  • Aging tunnels with small cross-sections can cause chronic traffic jams. This problem can be solved by widening the tunnel. In general, when the tunnel is expanded, the outer portion of the existing tunnel is excavated through a mechanical or blasting method. Such excavation affects not only the surrounding ground but also the existing tunnel. The application of the pre-cutting method can be a solution to these problems effectively. Therefore, if the widening of tunnel is performed by applying pre-cutting method, analysis of the impact of this method must be performed. In this study, in order to analyze the effect of applying pre-cutting in tunnel widening, numerical analysis is performed at six ground grades, from grade I to weathered rock. The analysis is performed with the expanding lane and the excavation length of pre-cutting as variables. In addition, the analysis is focused on the displacement of crown of the existing tunnel and the enlarged tunnel. As a result, the crown displacement of the enlarged tunnel is confirmed to converge at the same value regardless of the excavation length of the pre-cutting when the tunnel widening is completed. In the case of existing tunnels, uplift of crown occurs within 5 m of the front of the tunnel surface, and the shorter the excavation length of pre-cutting is found to be effective in preventing the occurrence of uplift.

Machinability of Pre-sintered Alumina Ceramics (알루미나 세라믹 가소결재의 피삭성 -다이아몬드 및 CBN공구의 절삭 성능-)

  • 김성청
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.41-46
    • /
    • 1996
  • In this study, unsintered and pre-sintered low purity alumina ceramics were machined with various tools to clarify the machinability, optimum tool materials and optimum cutting conditions. The main conclusions obtained were as follows. (1)In the case of dry cutting, the sintered diamond and natural diamond tools exhibit better performance in machining of the ceramic pre-sintered at lower temperature, and the tool lives of both tools in machining the ceramics pre-sintered at high temperature becomes extremely short. (2)The performance of CBN tool becomes better in dry machining of the ceramics pre-sintered at higher temperature. (3)When the pre-sintered ceramics were wet machined with sintered diamond, the tool life becomes considerably long, and higher cutting speed can be used than in the case of the CBN and ceramic tools, the tool lives becomes shorter at wet cutting than at dry cutting, especially exhibiting extremely short tool life in wet cutting with ceramic tool.

  • PDF

저순도 알루미나 세라믹 가소결재의 피삭성

  • 이재우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.33-38
    • /
    • 1995
  • In this study, unsistered, pre-sintered and sintered low purity alumina ceramics were machined with various tools to clarify the machniability, the optimum tool materials and the optimum tool materials and the optimum cutting conditions. The maon conclusions obtained were as follows. (1) Machined withalloy steel tool, the machinabilty of te pre-sintered ceramics becomes better with the decrease of pre-sintering temperature, but that of unsintered ceramics(white body) was extremely poor. (2) In the case of carbide tool K01, the tool life in machining white body was the longest, and the machinabilty of pre-sintered ceramics becomes poorer with the increase of the pre-sintering temperature. (3) In the case of ceramic tool, the 10000-1100 .deg. C pre-sintered ceramics showed te best machinability within a certain cutting speed range. So far as dry machining, the above combination and conditions showed the highest productivity. (4) When the pre-sintered ceramics were wet machined withsintered diamond tool, the tool life becomes extremelylong, and higher cutting speed can be can be used than in the case offull-sintered ceramics. The productivity of wet cutting is much higher than that ofdry cutting.

  • PDF

Development of the Altari Radish Pre-Processing System for Kimch Production (I) - Leaf and root tail cutting equipment - (김치생산용 알타리무 전처리 가공시스템 개발(I) - 무청·뿌리끝부 절단장치 -)

  • Min Y.B.;Kim S.T.;Kang D.H.;Chung T.S.;La W.J.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.5 s.106
    • /
    • pp.451-456
    • /
    • 2004
  • To establish a Altari radish pre-processing system far kimchi, the leaves and root tail of the Altari radish cutting de-vices were developed. The cutting resistances depend on the edge angles, oblique angles and cutting speeds were measured and analyzed. The experiments were performed to reveal the optimal conditions that showed the minimum cutting resistances acting on the materials. As the results, the optimum conditions that acting on the leaves were at edge angle $25^{\circ}$, oblique angle $40^{\circ}$ and cutting speed 0.5 m/s, and those acting on the root tails were at edge angle $20^{\circ}$, oblique angle $30^{\circ}$ and cutting speed 0.5 m/s, respectively. Considered a safety conception, the oblique angle of the leaves cutting device was adjusted as $20^{\circ}$, and then the cutting efficiencies of the both devices at these conditions were showed perfect performances.

A Study on the Precision Hole Machiningof Pre Hardened Mould Steel (프리하든 금형강의 정밀 홀 가공에 관한 연구)

  • Lee, Seung-Chul;Cho, Gyu-Jae;Park, Jong-Nam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.98-104
    • /
    • 2012
  • In this paper, precision processing is carried out for the pre hardened steel(HRC 54), which is one of injection mould materials. Processing characteristics are estimated according to the number of tool cutting blade and roundness is observed by the 3-Dimensional measuring machine. The surface roughness affected by the wire electric discharge machining are measured. Cutting component force of STAVOX is the highest in condition of 2F processing because load per a blade of cutting tool is high. Especially, the difference in Fz is over 20N by cutting load. The slower spindle rotation speed and tool feed rate are, the better cutting component force is. The roundness of hole processed in condition of 4F is good because feed rate is able to be fast. When rotation speed is increased, the surface roughness is decreased. The surface roughness acquired in condition of 2F processing is higher about 50% than 4F processing.

Growth Characteristics as Influenced by Cutting Site and Planting Method in Autumn Field Cutting of Sedum sarmentosum (돌나물의 가을 노지삽목에서 삽수부위 및 삽식방법에 따른 생육특성)

  • Ahn, Jeong-Ho;Kwon, Ji-Woong;Bae, Jong-Hyang;Lee, Seung-Yeob
    • Journal of Bio-Environment Control
    • /
    • v.17 no.1
    • /
    • pp.60-65
    • /
    • 2008
  • For autumn field cutting of Sedum sarmentosum, the effects of cutting site (distal, middle, and proximal) and planting method (space drill seeding, drill seeding, and broadcast seeding) on survival rate and growth characteristics were investigated at pre- and post-winter season. Plant height root length, stem number per plant, number of branch per plant, fresh weight of shoot, and dry weight of shoot were significantly superior in distal site at pre-wintering (40 days after cutting). At post-wintering (May 10th), stem number per plant, fresh weight and dry weight per $m^2$ in cutting of distal site showed a significant increasement compared to the cutting of proximal site. At pre-wintering (40 days after cutting), the growth in space drill seeding was well than that in drill seeding and broadcast seeding, and fresh weight and dry weight per $m^2$ in space drill seeding were high in order of space drill seeding, broadcast seeding, and drill seeding. At post-wintering (May 10th), stem number per plant, fresh weight and dry weight per $m^2$ in space drill seeding were significantly increased than those in drill seeding. Accordingly, the cutting using distal site of stem in autumn field cutting was desirable for the growth and shoot yield. The space drill seeding showed the highest yield potential among three seeding methods, but broadcast seeding was favorable in saving of labor, because the fresh weight of shoot in broadcast seeding was similar in the space drill seeding at post-wintering.

Observation for Machinability of Hardening Particle Dispersed Iron Based Sintered Alloy

  • Tamori, Ryo;Ishihara, Naoshi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.301-302
    • /
    • 2006
  • Machinability and machining mechanism were examined in the case where resin impregnation treatment was conducted to the Mo-Co hardening particle dispersed iron-based sintered alloy. As a result, the force required for machining decreased significantly compared with the case where resin impregnation treatment was not conducted. This effect is considered to be attributable to the embrittlement of cutting chips produced by the minimization of the cut material deformation.

  • PDF

A hybrid cutting technology using plasma and end mill for decommissioning of nuclear facilities

  • Choi, Min-Gyu;Lee, Dong-Hyun;Jeong, Sang-Min;Figuera-Michal, Darian;Seo, Jun-Ho
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1145-1151
    • /
    • 2022
  • A hybrid cutting using both plasma and end mill was developed for safe and efficient dismantling of nuclear facilities. In this cutting method, a moving arc plasma heats up the workpiece before milling. Thermally softened part of the workpiece is then removed quickly and deeply with an end mill. For the cutting experiments, a three-axis numerical control (NC) milling machine was combined with a commercialized arc plasma torch and used to cut 25 mm thick stainless steel plates. Experimental results revealed that pre-heating by arc plasmas can improve the cutting volume per unit time higher than 40% by reducing the cutting load and increasing the cuttable depth when using an end mill without cutting fluids. These advantages of a hybrid cutting process are expected to contribute to quick and safe segmentations of metal structures with radioactively contaminated inner surfaces.

Study to Reduce Process Cycle Time and to Improve Surface Roughness of a Mobile Phone Unibody Case through Cutting Force Optimization (절삭력 최적화를 통한 핸드폰 Unibody Case 가공 싸이클 타임 단축 및 표면 조도 향상에 관한 연구)

  • Lee, Seung-Yong;Choi, Hyun-Jin;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.119-124
    • /
    • 2017
  • Machining optimization using typical computer-aided manufacturing (CAM) software mainly depends on tool paths, and it is impossible to predict the behavior of material or cutting force. In this paper, cutting force analysis simulation is performed on the Unibody Case of a mobile phone with the aim of optimizing cutting-force-based machining using the Third Wave Systems' AdventEdge Production Module. Machining time after optimization was shortened by 42% for roughing compared to pre-optimization, and actual machining time was reduced by 36.8%. For finishing, machining time was reduced by 92%, and actual machining time was reduced around 90%. A surface roughness analysis found that the post-optimization surface roughness was $1.16{\mu}m$ Ra, compared to a pre-optimization value of $1.75{\mu}m$ Ra.

Prediction of Relative Deformation between Cutting Tool and Workpiece by Cutting Force [$1^{st}$ paper] (절삭력에 의한 공구와 공작물의 상대적 변형량 예측 [1])

  • Hwang, Young-Kug;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.86-93
    • /
    • 2010
  • Any relative deformation between the cutting tool and the workpiece at the machining point, results directly in form and dimensional errors. The source of relative deformations between the cutting tool and the workpiece at the contact point may be due to thermal, weight, and cutting forces. Thermal and weight deformations can be measured at various positions of the machine tool and stored in the compensation registers of the CNC unit and compensated the errors during machining. However, the cutting force induced errors are difficult to compensate because estimation of cutting forces are difficult. To minimize the error induced by cutting forces, it is important to improve the machining accuracy. This paper presents the pre-calculated method of form error induced by cutting forces. In order to estimate cutting forces, Isakov method is used and the method is verified by comparing with the experimental results. In order to this, a cylindrical-outer-diameter turning experiments are carried out according to cutting conditions.