• Title/Summary/Keyword: Pre-cracks

Search Result 178, Processing Time 0.024 seconds

Transfer Learning Based Real-Time Crack Detection Using Unmanned Aerial System

  • Yuvaraj, N.;Kim, Bubryur;Preethaa, K. R. Sri
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.351-360
    • /
    • 2020
  • Monitoring civil structures periodically is necessary for ensuring the fitness of the structures. Cracks on inner and outer surfaces of the building plays a vital role in indicating the health of the building. Conventionally, human visual inspection techniques were carried up to human reachable altitudes. Monitoring of high rise infrastructures cannot be done using this primitive method. Also, there is a necessity for more accurate prediction of cracks on building surfaces for ensuring the health and safety of the building. The proposed research focused on developing an efficient crack classification model using Transfer Learning enabled EfficientNet (TL-EN) architecture. Though many other pre-trained models were available for crack classification, they rely on more number of training parameters for better accuracy. The TL-EN model attained an accuracy of 0.99 with less number of parameters on large dataset. A bench marked METU dataset with 40000 images were used to test and validate the proposed model. The surfaces of high rise buildings were investigated using vision enabled Unmanned Arial Vehicles (UAV). These UAV is fabricated with TL-EN model schema for capturing and analyzing the real time streaming video of building surfaces.

Exploring shrinkage crack propagation in concrete: A comprehensive analysis through theoretical, experimental, and numerical approaches

  • Vahab Sarfarazi;Soheil Abharian;Nima Babanouri
    • Computers and Concrete
    • /
    • v.34 no.1
    • /
    • pp.15-31
    • /
    • 2024
  • This study explores the failure mechanisms of 'I' shaped non-persistent cracks under uniaxial loads through a combination of experimental tests and numerical simulations. Concrete specimens measuring 200 mm×200 mm×50 mm were manufactured, featuring 'I' shaped non-persistent joints. The number of these joints varied from one to three, with angles set at 0, 30, 60, and 90 degrees. Twelve configurations, differing in the placement of pre-existing joints, were considered, where larger joints measured 80 mm in length and smaller cracks persisted for 20 mm with a 1 mm crack opening. Numerical models were developed for the 12 specimens, and loading in Y-axis direction was 0.05 mm/min, considering a concrete tensile strength of 5 MPa. Results reveal that crack starting was primarily influenced by the slope of joint that lacks persistence in relation to the loading direction and the number of joints. The compressive strength of the samples exhibited variations based on joint layout and failure mode. The study reveals a correlation between the failure behavior of joints and the number of induced tensile fracture, which increased with higher joint angles. Specimen strength increased with decreasing joint angles and numbers. The strength and failure processes exhibited similarities in both laboratory testing and numerical modeling methods.

Structural Behavior of Pre-loaded RC Beams Strengthened by SP, CFS, and CFL (재하상태에서 보강된 철근 콘크리트보의 보강 재료에 따른 구조적 거동)

  • Chung, Lan;Lee, Young-Jea;Moon, Heui-Jeung;Lee, Kyung-Un;Jung, Sang-Jin
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.201-208
    • /
    • 1999
  • In recent years, strengthening by steel plate, carbon fiber sheets, and carbon fiber laminate is spotlighted in order to repair and rehabilitation of R/C structures. In this study, 3 methods of rehabilitation technique were analyzed from the test results. Test parameters were the width of cracks, the method of repair and rehabilitation, the magnitude of pre-load. Deflections, failure loads, strains of reinforcing bar, strains of carbon fiber sheet, carbon fiber laminate and steel plate were measured during the tests. The primary purpose of this research was to analyze the failure mode and structural behavior of strengthened RC beams with/without superimposed pre-load. Test results should that no significant difference was observed between with pre-loaded specimens and no-loaded specimens during rehabilitation.

Effect of Repair Width on Mechanical Properties of 630 Stainless Steel Repaired by Direct Energy Deposition Process (직접 에너지 적층 공정을 이용한 보수 공정에서 보수 폭에 따른 기계적 특성 관찰)

  • Oh, Wook-Jin;Shin, Gwang-Yong;Son, Yong;Shim, Do-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.42-50
    • /
    • 2020
  • This study explores the effects of repair width on the deposition characteristics and mechanical properties of stainless steel samples repaired using direct energy deposition (DED). In the DED repair process, defects such as pores and cracks can occur at the interface between the substrate and deposited material. In this study, we changed the width of the pre-machined zone for repair in order to prevent cracks from occurring at the inclined surface. As a result of the experiment, cracks of 10-40 ㎛ in length were formed along the inclined slope regardless of the repair width. Yield and tensile strength decreased slightly as the repair width increased, but the total and uniform elongation increased. This is due to the orientation of the crack. For specimens with a repair width of 20 mm, yield and tensile strength were 883 MPa and 1135 MPa, respectively. Total and uniform elongations were 14.3% and 8.2%, respectively. During observation of the fracture specimens, we noted that the fracture of the specimen with an 8 mm repair width occurred along the slope, whereas specimens with 14 mm and 20 mm repair depths fractured at the middle of the repaired region. In conclusion, we found that tensile properties were dependent upon the repair width and the inclination of the crack occurred at the interface.

A Study on the Laser Melting Deposition of Mixed Metal Powders to Prevent Interfacial Cracks (레이저 용융 금속 적층 시 결함 방지를 위한 혼합 분말 적층에 관한 연구)

  • Shim, D.S.;Lee, W.J.;Lee, S.B.;Choi, Y.S.;Lee, K.Y.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.27 no.1
    • /
    • pp.5-11
    • /
    • 2018
  • Direct energy deposition (DED) technique uses a laser heat source to deposit a metal layer on a substrate. Many researchers have used the DED technique to study the hardfacing of molds and dies. The aim of this study is to obtain high surface hardness and a sound bonding between the AISI M4 deposits and a substrate utilizing a mixed powder that contains M4 and AISI P21 powders. To prevent interfacial cracks between the M4 deposits and the substrate, the mixed powder is pre-deposited onto a JIS S45C substrate, before the deposition of M4 powders. Interfacial defects occurring between the deposits and substrate and changes in the microhardness of the intermediate layer were examined. Observations of the cross-sections of deposited specimens revealed that the interfacial cracks appeared in samples with one and two mixed layers regardless of the mixture ratio. However, the crack was removed by increasing the mixture ratio and the number of intermediate layers. Meanwhile, the microhardness in the mixed layer was found to decrease with increasing ratio of P21 powder in the mixture and that in the upper region of the deposited layers was approximately 800 HV, which was attributed to various alloying elements in the M4 powder.

A three-stage deep-learning-based method for crack detection of high-resolution steel box girder image

  • Meng, Shiqiao;Gao, Zhiyuan;Zhou, Ying;He, Bin;Kong, Qingzhao
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.29-39
    • /
    • 2022
  • Crack detection plays an important role in the maintenance and protection of steel box girder of bridges. However, since the cracks only occupy an extremely small region of the high-resolution images captured from actual conditions, the existing methods cannot deal with this kind of image effectively. To solve this problem, this paper proposed a novel three-stage method based on deep learning technology and morphology operations. The training set and test set used in this paper are composed of 360 images (4928 × 3264 pixels) in steel girder box. The first stage of the proposed model converted high-resolution images into sub-images by using patch-based method and located the region of cracks by CBAM ResNet-50 model. The Recall reaches 0.95 on the test set. The second stage of our method uses the Attention U-Net model to get the accurate geometric edges of cracks based on results in the first stage. The IoU of the segmentation model implemented in this stage attains 0.48. In the third stage of the model, we remove the wrong-predicted isolated points in the predicted results through dilate operation and outlier elimination algorithm. The IoU of test set ascends to 0.70 after this stage. Ablation experiments are conducted to optimize the parameters and further promote the accuracy of the proposed method. The result shows that: (1) the best patch size of sub-images is 1024 × 1024. (2) the CBAM ResNet-50 and the Attention U-Net achieved the best results in the first and the second stage, respectively. (3) Pre-training the model of the first two stages can improve the IoU by 2.9%. In general, our method is of great significance for crack detection.

Analysis of Micro- to Macro-Mechanics in Granitic Rock: Experimental Observation and Theoretical Consideration (화강암질암에 대한 미시적에서 거시적 손상역학의 해석 : 실험 및 이론)

  • Jeong, Gyo-Cheol
    • Economic and Environmental Geology
    • /
    • v.27 no.5
    • /
    • pp.499-505
    • /
    • 1994
  • Local stress concentrations often cause new micro-damaging induced by a healed pre-existing defects, and the macro-damage is developed by propagation and coalescence of the micro-damage. The micro-damage causes non-linear deformation in rock material. Considerable work has also been applied to describe mathematically the behavior of cracks under stress. Although these mathematical models can usually be made to agree quite well with the measured data, but it is questionable how well the models describe real rock including microcracks in pre-failure state, such as their micro-damage mechanisms. In the present study, micro-damage initiation and propagation in granitic rock under increasing stress were observed directly. Furthermore, a stress analysis considering the bisphere model was carried out using the homogenization theory to analyze the mechanics of the stress-induced micro-damage.

  • PDF

Anticipated and actual performance of composite girder with pre-stressed concrete beam and RCC top flange

  • Gurunaathan, K.;Johnson, S. Christian;Thirugnanam, G.S.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.117-124
    • /
    • 2017
  • Load testing is one of the important tests to determine if the structural elements can be used at the intended locations for which they have been designed. It is nothing but gradually applying the loads and measuring the deflections and other parameters. It is usually carried out to determine the behaviour of the system under service/ultimate loads. It helps to identify the maximum load that the structural element can withstand without much deflection/deformation. It will also help find out which part of the element causes failure first. The load-deflection behaviour of the road bridge girder has been studied by carrying out the load test after simulating the field conditions to the extent possible. The actual vertical displacement of the beam at mid span due to the imposed load was compared with the theoretical deflection of the beam. Further, the recovery of deflection at mid span was also observed on removal of the test load. Finally, the beam was checked for any cracks to assert if the beam was capable of carrying the intended live loads and that it could be used with confidence.

Identification and conservation of Kongchong Jung's relics (정공청 장군 유품(중요민속자료 38호)의 분석과 보존처리)

  • Chung, Young Dong;Kang, Ae Kyung
    • Journal of Conservation Science
    • /
    • v.7 no.2
    • /
    • pp.45-53
    • /
    • 1998
  • The Kong-Chung Jung's relics made of wooden materials were pre-examined for conservation. Kong-Chung Jung was a General of the Chosun Dynasty and his weapons were made of wood. The pre-examining method was focused on the quality and species of the wooden weapons. X-ray radiation was used for the observation of wood structure, and the condition of the relics was relatively good although they contained some cracks. The examination of species using optical microscope showed that the species of each relics were Pinus densiflora of hanging scroll pole, Lozoste lancifolia of a top of flagnole, Fraxinus sp. of a flagpole, Phyllostachys sp. of arrow shafts. For the conservation of the relics, celyl alcohol as dimensional stability chemicals was used and poly(vinyl acetate) and epoxy adhesives were also used for the joining and restoring of the relics.

  • PDF

Experimental study of Kaiser effect under cyclic compression and tension tests

  • Chen, Yulong;Irfan, Muhammad
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.203-209
    • /
    • 2018
  • Reliable estimation of compressive as well as tensile in-situ stresses is critical in the design and analysis of underground structures and openings in rocks. Kaiser effect technique, which uses acoustic emission from rock specimens under cyclic load, is well established for the estimation of in-situ compressive stresses. This paper investigates the Kaiser effect on marble specimens under cyclic uniaxial compressive as well as cyclic uniaxial tensile conditions. The tensile behavior was studied by means of Brazilian tests. Each specimen was tested by applying the load in four loading cycles having magnitudes of 40%, 60%, 80% and 100% of the peak stress. The experimental results confirm the presence of Kaiser effect in marble specimens under both compressive and tensile loading conditions. Kaiser effect was found to be more dominant in the first two loading cycles and started disappearing as the applied stress approached the peak stress, where felicity effect became dominant instead. This behavior was observed to be consistent under both compressive and tensile loading conditions and can be applied for the estimation of in-situ rock stresses as a function of peak rock stress. At a micromechanical level, Kaiser effect is evident when the pre-existing stress is smaller than the crack damage stress and ambiguous when pre-existing stress exceeds the crack damage stress. Upon reaching the crack damage stress, the cracks begin to propagate and coalesce in an unstable manner. Hence acoustic emission observations through Kaiser effect analysis can help to estimate the crack damage stresses reliably thereby improving the efficiency of design parameters.