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Analysis of Micro- to Macro-Mechanics in Granitic Rock : Experimental
Observation and Theoretical Consideration

Gyo-Cheol Jeong*

ABSTRACT : Local stress concentrations often cause new micro-damaging induced by a healed pre-existing defects, and the
macro-damage is developed by propagation and coalescence of the micro-damage. The micro-damage causes non-linear
deformation in rock material. Considerable work has also been applied to describe mathematically the behavior of cracks
under stress. Although these mathematical models can usually be made to agree quite well with the measured data, but
it is questionable how well the models describe real rock including microcracks in pre-failure state, such as their mi-
cro-damage mechanisms. In the present study, micro-damage initiation and propagation in granitic rock under increasing
stress were observed directly. Furthermore, a stress analysis considering the bisphere model was carried out using the
homogenization theory to analyze the mechanics of the stress-induced micro-damage.

INTRODUCTION

Micro-damaging process determines their macroscopic
mechanical response. Granite commonly involves com-
plex composite microcrack systems which are caused by
different geologic processes and under varying condi-
tions (Kranz, 1983).

Microcrack studies are of increasing interest in geo-
physics and civil engineering related to underground
space development and radioactive waste disposal.
Theoretical works relating microcrack density and mi-
crocrack geometry to material modulus reduction (Wa-
Ish, 1965; O’Connel et al., 1974) and recent studies re-
lating crack density to material strength reduction (Horii
et al., 1986; Ashby et al., 1986, 1990) have suggested that
it would be possible to obtain a complete and testable
theory of macro-damage in rocks. However, numerical
analysis of stress distribution around micro-damage, that
is, microcracking at grain contact due to deformation of
the specimen, have not been studied sufficiently up to
the present.

Microscopic studies of cracks in postloaded samples
have been made using scanning electron microscopy
(SEM) in order to reveal interactions between microc-
racks and relationships between the concentrated mic-
rocracks and macroscopic failure (Friedman et al., 1978;
Wong, 1982; Mardon et al., 1990). These experimental
studies have shown that macroscopic fractures grow from
microcracks, which are abundantly found in crystalline
rocks. However, these works have a drawback; they have
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been performed only under zero stress conditions using
thin or cut section after experiment, or under artificially
fractured conditions.

To better understand the fundamental problems of
micro-damage occurrence and propagation at the grain
contact area within granite, I have observed the actual
microcrack behavior during the deformation of granite
specimens. Experimental studies of microcrack initiation
at the grain contact portion of coarse-grained granite
were carried out under uniaxial compressive stress using
a newly developed experimental system (Jeong and Ichi-
kawa, 1994). This experimental system enables a conti-
nuous observation of microcracking under loading. In
addition, since visible stress-induced microcracks during
loading cannot be visualized in the unloading state in
conventional experimental method, direct observation
under loading is very important for an accurate under-
standing of true micro-damage. Furthermore, the ho-
mogenization theory (Sanchez-Palencia, 1980)) was used
to analyze the stress concentration in the vicinity of the
microcracks at grain contact and variation of elastic
modulus during microcracking. Opening of healed pre-
existing microcracks parallel to applied stress often cau-
sed new microcracking, and simultaneously these new
microcracking are affected by the elastic mismatch of
two grains such as quartz and feldspar. Details of ex-
periments were given by Jeong and Ichikawa (1994).

PRE-EXISTING MICROCRACKS

Pre-existing microcracks within originally intact rocks
are very important in causing initial micro-damage in
rocks. Before specimens are loaded, many healed pre-
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Fig. 1. Photomicrograph showing stress-induced micro-dama-
ging at quartz (Q)-feldspar (F) contact portion. Large solid
circles were marked for confirmation of observation area.
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Fig. 2. Hertzian loading arrangement showing a schematic
array of a grain contact.

existing microcracks (indicated by CrQ in Fig. 1) can be
observed in quartz grains, and some longish microcavi-
ties (indicated by CaF in Fig. 1) with blunt ends are
observed in feldspar.

Jeong et al. (1993, 1994) described these long rows of
microcavities as healed microcracks with almost comp-
letely leaked fluid inclusion. They observed that micro-
cracks were preferentially developed in quartz of granite,
and most of them were intracrystalline, frequently star-
ting at grain boundaries. Therefore, these microcracks
can be visualised as pre-existing intracrystalline micro-

cracks, and their systems may be considered as micro-
cracks caused by internal stress due to change of pres-
sure and/or temperature.

MICRO-DAMAGE INITIATION AND
PROPAGATION

The primary intracrystalline microcracks, that is, the
cleavage and coincident boundary microcracks in feld-
spar grains, are initiated through the defective cleavage
(CaF in Fig. 1) and the grain boundary at a stress level
30 MPa. At the same time, microcavities are linked, and
intracrystalline microcracks and grain boundary micro-
cracks parallel or subparallel to the axial stress direction
are predominantly caused by tensile stress due to the
Poisson effect in nature. Furthermore, local variations
in elastic properties of different minerals or the presence
of microcracks cause the stress to be concentrated, and
the remote compressive stresses are converted to locally
tensile stresses. Based on these facts, intracrystalline
microcracks nearly parallel to the axial stress direction
are initiated from pre-existing grain boundary microc-
racks between quartz and feldspar grain.

ANALYSIS

Estimation of micro-damage initiation and propaga-
tion

Since most of grains are in contact with each other,
we base our interpretation for microcrack initiation and
propagation at contact portion of grains on the special
nature of the stress field of Hertzian loading (Wilshaw,
1971). The radius a, as shown in Fig. 2, of the circle of

contact between spherical two grains are formed from
the Hertzian analysis :

3 (1-v) (1-v?)
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where P is the normal load applied on the grain, E' and
E are the Young’s moduli of quartz and feldspar grains,
respectively, and v’ and v are the corresponding values
of the Poisson ratio.

The primary stress-induced intracrystalline micro-
crack is initiated from contact portion of two grains.
While the crack is small and normal to the contact sur-
face, the maximum tensile stress 62 and of in the quartz
and feldspar grains are uniformly distributed along the
microcrack and the microcracking criterion is assumed
equivalent to that for a single edge microcrack in tension
(Wilshaw, 1971). The stress intensity factors K? and Kf,
which are function of the stress and the microcrack
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Fig. 4. Macroscopic and microscopic periodic structure.

length ¢? and ¢" are given by

K$=1.126.%(nc%)” @
Ki=1.1204"(nc")"* (©)
where
(-w)P
o9= At @
(WP
oh= 3t ®

By substituting equation (4) and (5) into equation (2)
and (3), we obtain the critical forces for the initiation of
microcracks in quartz and feldspar grain as

. 2Tlangc
Pl 1.12(nc2)*(1—2v") ©
2 2F
HﬁﬁmI: masic (7)
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In this case, we should assume that the local stress
field in the vicinity of the microcrack is solely due to the
elastic contact between two grains (Zhang et al., 1990).
This is a reasonable assumption in our microcrack ini-
tiation analysis since the contact stress concentration is
highly localized and the microcrack length at the ini-

tiation of Hertzian fracture is very short (Zhang et al,
1990).

We now evaluate the characteristics for microcrack
growth. Since at a contact portion of two grains, P2
must be equal to Pé.u, we obtain the following relation :

Ke  (1-2v) NG
K - ()

where the critical stress intensity factors of quartz and

feldspar have been measured by Atkinson et al. (1980)

for several orientation. We take their average critical st-
ress intensity factors 0.383 MPa /m for Kic and 0.364

MPa./m_for Ki.. The Poisson ratios are obtained as v’
=0.109 and v=0.299 by Birch (1961). By using these
values, we obtain the microcrack growth condition as :

¢F=3.422 ©)

However, if open pre-existing intracrystalline micro-
cracks are developed in quartz and feldspar grains, the
Hertzian theory presented here is not applicable.

In bisphere model, relation between the microcrack
spacing and length in feldspar and microcrack spacing
in quartz for input data of computation is shown in
Fig. 3.

Homogenization Theory for Elastic Problem

The homogenization theory allows us to derive mic-
roscopic stress distributions which account for the mi-
cro-damage initiation of rocks. This theory can be ap-
plied when the media being investigated have a periodic
structure (Sanchez-Palencia, 1980). Macroscopic equi-
valent structure is called the homogenized structure and
its behavior coefficients are the homogenized coefficie-
nts. Furthermore, by a localization procedure, the theory
allows an easy computation of the microscopic field of
stresses and, in particular, of stress forces at the boun-
daries between two grains. These overstresses, at the
microscopic level, can initiate microcracks.

Consider a composite material formed by the spatial
repetition of a unit cell made of different material as
shown Fig. 4. Let us assume that a body characterized
by the domain Q, for example, made of two different
materials whose mixture is represented by a unit cell that
is very small, of order ¢ compared with the dimensions
of the structural body Q. We denote that the elasticity
tensor is E*(x), body force is f(x), the traction is ¢, and
the displacement is #*(x). Then static equilibrium using
weak form on the body can be stated as

a(x)  wix)

Jn Efjkt(l?) —Bx, o & (10)
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where, v(x) is arbitrary admissible displacement, and
superscript ¢ is used to indicate dependence on the mic-
rostructure.

If the body is subjected to some load and boundary
conditions, the resulting deformation and stresses, in
general, rapidly vary from point to point because of re-
petition of microscopic unit cells, it may be censidered
that all quantities have two explicit dependencies. One
is on the macroscopic level x, and the other is on the
microscopic level x/e. In order to introduce a function
depending on the microscopic level, we may take the
microscopic variable y=x/e. Accordingly, sﬂ(x) fi(x), and
u*(x) have the two variable functions as follows :

Eju(x)=Ejlx, %) =Eju(x,y)
Fi@)=Fl, 2)=fixy)
a1
ui(x)=uix, i—) =uix,y)
These functions are, in general, Y-periodic functions
on y<Y. Differentiation of two variable function is given
by following operator such as

o L0 Lo
oo e )
The solution u°(x) from boundary conditions of the
function (10) makes it reasonable to assume that u’(x)

can be expressed as an asymptotic expansion of the di-
splacement field in the form :

w)=uly) =1 ) e ) ) s y= 5 (13)

and
V(x)=v(5y)=v'@)+ev' () Te viEp) + (14

(12)

where, u',u’ - are Y-periodic function with respect to

the variable y€Y. The first term u°of the expansion of
u*in ¢ does not depend on the microscopic variable y but

depends only on the macroscopic scale x. In other words,
u’ represents, essentially, the macroscopic mechanical
behavior while the u', u® -~ represent the microscopic
behavior.

Introducing equations (11), (12), (13) and (14) into
equation (10), and solving the limit ¢ -0, we can obtain
equations on #' and «* (Sanchez-Palencia, 1980). First
of all, the solution u' expresing the effect of microstru-
ctures can be written as follows :

0

uix,y)= - X"(x,y) ) 3 T (15)
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where, %i(x) is an arbitrary additive constant in y, that
is, an integral constant on y. x "' is symmetric with respect
to the indices k and /. This implies that six different
vector functions are solved for the three-dimensional
problem. Accordingly, the function is given by

Ay ¥
JrEman =5 5 (16)

OEu(xy)
- (- ke

Next, the solution u°can be written following global

3Vi
Joedy= f yEw(x,v)a—”dy

equilibrium equation for the macroscopic structure as :

foruio 5 5 w

= J Z(X)Vi(x)tt\'+ j at;'] (xwi(x)dx

where, homogenized elasticity tensor

FY LX) = Y] J ( ykl(x,y) upq(x,y) axp(x,y) )d}’ (18)

where, | Y| stands for the volume of the unit cell, and
homogenized body force

1
7(")=|—Y|j Fipdy 19)

are defined. Here, ¥, as shown in equation (16), is a
vector function determined by the spatial repetition of
microstructure consisting of microscopic unit cell, that
is, this function is what is called a characteristic defo-
rmation function. Equation (15) shows that the displace-
ment ' due to the microstructures is given by a form of
multiplied average behavior strain gui/gx, multified by
characteristic deformation function x*. Comparing
equation (17) with the original equation (10), we can find
that if we use the elasticity tensor (18) and the body force
(19) instead of E%u(x) and f(x) respectively, then we can
evaluate the average behavior #°of the material with
microstructure. Equation (18) is also an integral on mi-
croscopic unit cell, and E%(x) and f(x), as average be-
havior, are equivalent to homogenized elasticity tensor
and homogenized body force, respectively.

The stress in each point is given by constitutive equa-
tion as follows :

c?,-=Efyu-—(xL = oi(xy) Heol(ny)+ 20)

where, introducing u*=u"+¢u' into equation (20), oy, the
approximation of the localized stress in microscopic unit
cell, is given by
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Fig. 6. Calculated contour map view of the normalized tensile
stress in the contact portion of quartz-feldspar.
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This localized stress oj(x,p) shows the stress field in

microscopic unit cell, and the volume average in the unit

cell is given by

] .-,-(x)z—‘—lﬁj /O3 y)dy 22

then equation (22) satisfies equilibrium equation as fol-
lows :

[ o6 S de= [ofiae (23)

As shown above, from using homogenization theory,
the average physical properties of the body, including
microscopic repeated unit cell, can be computed, and
localized stress distribution in arbitrary portion can be
also estimated.

Fig. 7. Unit cell mesh for mechanical properties of quartz
including healed pre-existing microcracks.

Volume fracton: G103x10"

Number of miiviosiack: 3

Volume fraction: #.154 107

Number of microcrack : 1
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Fig. 8. Unit cell mesh for the microcrack propagation in bi-
sphere model.

RESULTS

The granite used in the study may be considered in
periodic material consisting of bisphere condition of
quartz and feldspar (Fig. 5). First of all, for the first stage
in the deformation, stress analysis in state in which pre-
existing microcracks in quartz grain of unit cell were not
initiated was carried out. Local values of the tensile stress
normalized to the loading stress in the vicinity of the
grain contact portion are shown in Fig. 6. The elastic
coefficients of the quartz and feldspar have been mea-
sured by Birch (1961) etc., then we took the Young’s
modulus 87.5 GPa, Poisson’s ratio 0.109 for quartz and
average Young’s modulus of orthoclase and plagioclase
67.6 GPa, Poisson’s ratio 0.299 for feldspar.

Mechanical properties of quartz including healed pre-
existing microcracks must be computed to determine
those of quartz-feldspar system. Fig.7 is mesh of unit
cell in quartz grain including healed pre-existing micro-
cracks. Variation of Young’s modulus of quartz grain
with opening of healed pre-existing microcracks is non-
linear.

Fig.9 illustrates decreasing of normalized Young’s
modulus with increasing of volume fraction of stress-
induced micro-damage in feldspar and anisotropy com-
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Fig. 9. Graphs showing decrease in normalized Young’s mo-
dulus with increase in volume fraction of microcrack in feid-
spar.

puted from micro-damage propagation of Fig. 8, which
is nonlinear that normalized Young’s modulus drops fast
as soon as stress-induced micro-damage initiate.

CONCLUSIONS

The aim of this paper is to provide some basis for a
micromechanics of stress-induced damage occurring at
the major constituent mineral contact portion of the
granite. Micro-damaging in the contact of constituent
minerals plays an important role in the nonlinear defor-
mation process and leads to shear fracture of brittle
material such as the granite under room temperature,

Granitic rocks, except biotite granite, also may be de-
scribed in simplified terms as a two component system
consisting of bisphere condition of quartz and feldspar.

Though the present study was limited only to the in-
teraction of two minerals such as quartz and feldspar
grain, most of granitic rocks also include micas and/or
hornblende etc. and mechanical properties of the rock
are more or less affected by them, which means that
analysis for polycomponent system is necessary in mu-
ltiple-grain interaction. However these problems may be
reconsidered. Nevertheless, the present study is subjected
to the basis of understanding the polycomponent system
in polycrystalline rocks.

Finally, the important point of this study is that the
analysis gives some idea of how micro-damaging can be

Gyo-Cheol Jeong

triggered from a pre-existing microcrack.
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