• Title/Summary/Keyword: Pre-cracks

Search Result 178, Processing Time 0.023 seconds

Pre-Infection Behavior of the Pitch Canker Fungus Fusarium circinatum on Pine Stems

  • Thoungchaleun, Vilakon;Kim, Ki-Woo;Lee, Don-Koo;Kim, Chang-Soo;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • v.24 no.2
    • /
    • pp.112-117
    • /
    • 2008
  • Pre-infection behavior of Fusarium circinatum on stems of pine species was investigated with scanning electron microscopy. Two-year-old stems of Pinus densiflora and p. rigida were inoculated with the fungal conidial suspension and subjected to $25^{\circ}C$ for up to 16 hr. Most microconidia germinated 12 hr after inoculation on pine stems. Conidia produced germ tubes from either one or both ends of microconidia. Germ tubes grew over the stem surface and appeared to enter host tissues through natural openings on pine stems. Surface cracks in the cork were entrance sites of germ tubes of F. circinatum. In addition, host cell wall cracks were often found at the tip of germ tubes. The cuticle appeared to be eroded either at the tip of germ tubes or around germlings. Germ tubes also produced appressoria-like structures, exhibiting swollen tips of germ tubes on the stem surface. There seems to be no significant differences in the pre-infection behavior of F. circinatum on stems between the two pine species.

Influence of pre-compression on crack propagation in steel fiber reinforced concrete

  • Abubakar, Abdulhameed U.;Akcaoglu, Tulin
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.261-270
    • /
    • 2021
  • In this study, a new understanding is presented on the microcracking behavior of high strength concrete (HSC) with steel fiber addition having prior compressive loading history. Microcracking behavior at critical stress (σcr) region, using seven fiber addition volume of 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, and 2.0% was evaluated, at two aspect ratios (60 and 75). The specimens were loaded up to a specified compressive stress levels (0.70fc-0.96fc), and subsequently subjected to split tensile tests. This was followed by microscopic analyses afterwards. Four compressive stress levels as percentage of fc were selected according to the linearity end point based on stress-time (σ-t) diagram under uniaxial compression. It was seen that pre-compression has an effect on the linearity end point as well as fiber addition where it lies within 85-91% of fc. Tensile strength gain was observed in some cases with respect to the 'maiden' tensile strength as oppose to tensile strength loss due to the fiber addition with teething effect. Aggregate cracking was the dominant failure mode instead of bond cracks due to improved matrix quality. The presence of the steel fiber improved the extensive failure pattern of cracks where it changes from 'macrocracks' to a branched network of microcracks especially at higher fiber dosages. The applied pre-compression resulted in hardening effect, but the cracking process is similar to that in concrete without fiber addition.

Fatigue life evolution of steel wire considering corrosion-fatigue coupling effect: Analytical model and application

  • Yang Ding;Xiao-Wei Ye;Hong Zhang;Xue-Song Zhang
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.363-374
    • /
    • 2024
  • The fatigue life of steel wire is affected not only by fatigue load, but also by corrosion environment in service period. Specially, the corrosion pit will lead to stress concentration on the surface of steel wire inducing the formation of fatigue cracks, and the fatigue cracks will accelerate the corrosion process. Therefore, the corrosion fatigue of steel wire is a coupling effect. In this study, the corrosion-fatigue coupling life curve is derived with considering corrosion-fatigue pitting stage, corrosion-fatigue short crack stage and corrosion-fatigue long crack stage. In addition, the stress concentration factors of different corrosion pits are calculated by COMSOL software. Furthermore, the effect of corrosion environment factors, that is, corrosion rate, corrosion pit morphology, frequency and action factor of fatigue load, on fatigue life of steel wire is analyzed. And then, the corrosion-fatigue coupling life curve is compared with the fatigue life curve and fatigue life curve with pre-corrosion. The result showed that the anti-fatigue performance of the steel wire with considering corrosion-fatigue coupling is 68.08% and 41.79% lower than fatigue life curve and fatigue life curve with pre-corrosion. Therefore, the corrosion-fatigue coupling effect should be considered in the design of steel wire.

A Study on the Improvement of Crack Propagation in Wing Root Fairing Support by Pre-load in Military Aircraft Production Process (군용항공기 생산공정에서 발생하는 예하중에 의한 주익 루트 페어링 지지대 균열개선 연구)

  • Shin, Jae Hyuk;Jeong, Su-Heon;Kang, Gu-Heon;Lee, Heon Sub
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.38-44
    • /
    • 2018
  • Military aircraft may have fatigue cracks in structurally weak areas due to multiple factors such as the accumulation of flight time while perform various missions and unpredictable air conditions. As a fatigue crack progresses, there is a risk that the structure will be destroyed in extreme cases, which can have a significant impact on flight safety. In this study, a cracking phenomenon was observed during the periodic inspection the inner support of the fairing, which is installed to protect the connection between the wing and the body of the aircraft. Therefore, a study on a series of quality improvement processes for reformation was described. In order to identify the causes of cracks, pre-load generation occurrence during the wing assembly process was investigated and a fracture analysis was performed. Also, the design of the support structure was suggested in terms of preventing recurrence of cracks. The structural integrity was verified using a stress and fatigue life analysis.

Crack initiation mechanism and meso-crack evolution of pre-fabricated cracked sandstone specimens under uniaxial loading

  • Bing Sun;Haowei Yang;Sheng Zeng;Yu Yin;Junwei Fan
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.597-609
    • /
    • 2023
  • The instability and failure of engineered rock masses are influenced by crack initiation and propagation. Uniaxial compression and acoustic emission (AE) experiments were conducted on cracked sandstone. The effect of the crack's dip on the crack initiation was investigated using fracture mechanics. The crack propagation was investigated based on stress-strain curves, AE multi-parameter characteristics, and failure modes. The results show that the crack initiation occurs at the tip of the pre-fabricated crack, and the crack initiation angle increases from 0° to 70° as the dip angle increases from 0° to 90°. The fracture strength kcr is derived varies in a U-shaped pattern as β increased, and the superior crack angle βm is between 36.2 and 36.6 and is influenced by the properties of the rock and the crack surface. Low-strength, large-scale tensile cracks form during the crack initiation in the cracked sandstone, corresponding to the start of the AE energy, the first decrease in the b-value, and a low r-value. When macroscopic surface cracks form in the cracked sandstone, high-strength, large-scale shear cracks form, resulting in a rapid increase in the AE energy, a second decrease in the b-value and an abrupt increase in the r-value. This research has significant theoretical implications for rock failure mechanisms and establishment of damage indicators in underground engineering.

Bending characteristics of Prestressed High Strength Concrete (PHC) spun pile measured using distributed optical fibre strain sensor

  • Mohamad, Hisham;Tee, Bun Pin;Chong, Mun Fai;Lee, Siew Cheng;Chaiyasarn, Krisada
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.267-278
    • /
    • 2022
  • Pre-stressed concrete circular spun piles are widely used in various infrastructure projects around the world and offer an economical deep foundation system with consistent and superior quality compared to cast in-situ and other concrete piles. Conventional methods for measuring the lateral response of piles have been limited to conventional instrumentation, such as electrical based gauges and pressure transducers. The problem with existing technology is that the sensors are not able to assist in recording the lateral stiffness changes of the pile which varies along the length depending on the distribution of the flexural moments and appearance of tensile cracks. This paper describes a full-scale bending test of a 1-m diameter spun pile of 30 m long and instrumented using advanced fibre optic distributed sensor, known as Brillouin Optical Time Domain Analysis (BOTDA). Optical fibre sensors were embedded inside the concrete during the manufacturing stage and attached on the concrete surface in order to measure the pile's full-length flexural behaviour under the prescribed serviceability and ultimate limit state. The relationship between moments-deflections and bending moments-curvatures are examined with respect to the lateral forces. Tensile cracks were measured and compared with the peak strains observed from BOTDA data which corroborated very well. By analysing the moment-curvature response of the pile, the structure can be represented by two bending stiffness parameters, namely the pre-yield (EI) and post-yield (EIcr), where the cracks reduce the stiffness property by 89%. The pile deflection profile can be attained from optical fibre data through closed-form solutions, which generally matched with the displacements recorded by Linear Voltage Displacement Transducers (LVDTs).

A Study on the Crack-propagation Mechanism of Pre-splitting Method with Consideration of Stress Field (응력장을 고려한 프리스플리팅 공법의 균열발생 원리에 대한 연구)

  • Yoon, Ji-Sun;Woo, Taek-Gyu;Kim, Min-Woo;Jang, Young-Min
    • Explosives and Blasting
    • /
    • v.27 no.2
    • /
    • pp.1-11
    • /
    • 2009
  • Abstract By investigating the stress redistribution caused by the preceding cut blasting when applying the pre-splitting method to tunnel round, an attempt was made to find conditions that were favorable for the propagation of cracks in contour holes. The investigation of the direction of minor principal stress in the numerical analysis revealed that the most significant factor affecting the change of the direction was the loading condition, while the core shape, rock type, and tunnel depth seemed to be less important in determining the direction of minor principal stress. Moreover, the number of cracks tended to increase with the increase of deviatoric stress. Through the model test of pre-splitting, it is confirmed that the pre-splitting method taking the stress field into account can reduce the extent of yield zone and has advantage in controlling the direction of crack than the conventional one.

Numerical analysis of thermal and composite stresses in pre-stressed concrete pavements

  • Nejad, Fereidoon Moghadas;Ghafari, Sepehr;Afandizadeh, Shahriar
    • Computers and Concrete
    • /
    • v.11 no.2
    • /
    • pp.169-182
    • /
    • 2013
  • One of the major benefits of the pre-stressed concrete pavements is the omission of tension in concrete that results in a reduction of cracks in the concrete slabs. Therefore, the life of the pavement is increased as the thickness of the slabs is reduced. One of the most important issues in dealing with the prestressed concrete pavement is determination of the magnitude of the pre-stress. Three dimensional finite element analyses are conducted in this research to study the pre-stress under various load (Boeing 777) and thermal gradient combinations. The model was also analyzed under temperature gradients without the presence of traffic loading and the induced stresses were compared with those from theoretical relationships. It was seen that the theoretical relationships result in conservative values for the stress.

Investigation of mechanical behaviour of non-persistent jointed blocks under uniaxial compression

  • Asadizadeh, Mostafa;Moosavi, Mahdi;Hossaini, Mohammad Farouq
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.29-42
    • /
    • 2018
  • This paper presents the results of an empirical study in which square rock-like blocks containing two parallel pre-existing rough non-persistent joints were subjected to uniaxial compression load. The main purpose of this study was to investigate uniaxial compressive strength and deformation modulus of jointed specimens. Response Surface Method (RSM) was utilized to design experiments and investigate the effect of four joint parameters, namely joint roughness coefficient (JRC), bridge length (L), bridge angle (${\gamma}$), and joint inclination (${\theta}$). The interaction of these parameters on the uniaxial compressive strength (UCS) and deformation modulus of the blocks was investigated as well. The results indicated that an increase in joint roughness coefficient, bridge length and bridge angle increased compressive strength and deformation modulus. Moreover, increasing joint inclination decreased the two mechanical properties. The concept of 'interlocking cracks' which are mixed mode (shear-tensile cracks) was introduced. This type of cracks can happen in higher level of JRC. Initiation and propagation of this type of cracks reduces mechanical properties of sample before reaching its peak strength. The results of the Response Surface Methodology showed that the mutual interaction of the joint parameters had a significant influence on the compressive strength and deformation modulus.

Transmission Electron Microscopy Characterization of Early Pre-Transition Oxides Formed on ZIRLOTM

  • Bae, Hoyeon;Kim, Taeho;Kim, Ji Hyun;Bahn, Chi Bum
    • Corrosion Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.301-312
    • /
    • 2015
  • Corrosion of zirconium fuel cladding is known to limit the lifetime and reloading cycles of fuel in nuclear reactors. Oxide layers formed on ZIRLO4^{TM}$ cladding samples, after immersion for 300-hour and 50-day in a simulated primary water chemistry condition ($360^{\circ}C$ and 20 MPa), were analyzed by using the scanning transmission electron microscopy (STEM), in-situ transmission electron microscopy (in-situ TEM) with the focused ion beam (FIB) technique, and X-ray diffraction (XRD). Both samples (immersion for 300 hours and 50 days) revealed the presence of the ZrO sub-oxide phase at the metal/oxide interface and columnar grains developed perpendicularly to the metal/oxide interface. Voids and micro-cracks were also detected near the water/oxide interface, while relatively large lateral cracks were found just above the less advanced metal/oxide interface. Equiaxed grains were mainly observed near the water/oxide interface.