• Title/Summary/Keyword: Pre-Harvest Residue Limit (PHRL)

Search Result 28, Processing Time 0.016 seconds

Establishment of Pre-Harvest Residue Limit(PHRL) of Insecticide Chlorfenapyr and Fungicide Fenarimol during Cultivation of Chwinamul(Aster scaber) (취나물의 재배기간 중 살충제 Chlorfenapyr와 살균제 Fenarimol의 생산단계 농약잔류허용기준의 설정)

  • Lim, Jong-Sung;Hong, Ji-Hyung;Lee, Cho-Rong;Han, Kook-Tak;Lee, Yu-Ri;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.1
    • /
    • pp.52-59
    • /
    • 2011
  • BACKGROUND: This study was performed to investigate pre-harvest residue limit (PHRL) in Chwinamul, to estimate biological half-life for residue of each pesticide. Chwinamul was sprayed with pesticides of standard and double application rate. Chlorfenapyr and fenarimol were sprayed once on Chwinamul at 10 days before harvest, and it was sampled 7 times and analysed the residual change of two pesticides. METHODS AND RESULTS: Chwinamul sample was extracted with acetonitrile and partitioned with dichloromethane, and pesticide residues were determined with GCECD. Method quantitation limit (MQL) of chlorfenapyr was 0.10 mg/kg and that of fenarimol was 0.02 mg/kg. Recoveries of chlorfenapyr at two fortification levels of 1.0 and 5.0 mg/kg were $94.2{\pm}$1.70 and $99.0{\pm}1.61%$, respectively. Recoveries of fenarimol at two fortification levels of 0.2 and 1.0 mg/kg were $92.1{\pm}2.14$ and $83.1{\pm}1.98%$, respectively. CONCLUSION(s): The biological half-lives of chlorfenapyr were about 3.5 days at standard application rate, and 3.4 days at double application rate. The biological half-lives of fenarimol were about 6.0 days at standard application rate, and 5.9 days at double application rate. The PHRLs of chlorfenapyr were recommended as 13.02 and 6.25 mg/kg for 10 and 5 days before harvest, respectively. And the PHRLs of fenarimol were recommended as 2.80 and 1.67 mg/kg for 10 and 5 days before harvest, respectively.

Establishment of Pre-Harvest Residue Limit (PHRL) of Methoxyfenozide and Novaluron on Peaches (복숭아 중 Methoxyfenozide와 Novaluron의 생산단계 농약잔류허용기준 설정)

  • Cho, Kyung-Won;Park, Jae-Hun;Kim, Ji-Won;Yoon, Ji-Yeong;Moon, Hye-Ree;Lee, Kyu-Seung
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.1
    • /
    • pp.6-12
    • /
    • 2013
  • Methoxyfenozide and novaluron were sprayed with single and triple treatments separately on peach during cultivation period. Samples were collected over 14 days, 8 times in total (0, 2, 4, 6, 8, 10, 12, 14 days). Methoxyfenozide and novaluron were extracted with acetone and partitioned with dichloromethane, and analyzed by HPLC/DAD. Method Quantitation Limit (MQL) were both 0.005 mg/kg, average recoveries of methoxyfenozide at two fortification levels of 0.05 and 0.25 mg/kg were determined $92.7{\pm}2.9%$ and $102.8{\pm}3.1%$, and novaluron were $98.2{\pm}4.8%$ and $96.7{\pm}9.0%$, respectively. The biological half-life of methoxyfenozide was about 4.41 days at single treatment, and 4.24 days at triple treatments. The biological half-life of novaluron was about 14.81 days at single treatment, and 14.50 days at triple treatments. Dissipation of pesticides on peach was influenced by growth dilution effect. In case of application of methoxyfenozide and novaluron following guidelines on safe use of pesticides, the final residue level was predicted to be lower than Maximum Residue Limit (MRL).

Establishment of Pre-Harvest Residue Limits (PHRLs) of Fluopicolide and Metrafenone in Cherry Tomato (Lycopersicon esculentum Mill.) (방울토마토(Lycopersicon esculentum Mill.) 생산단계에서 Fluopicolide 및 Metrafenone의 잔류허용기준 설정)

  • Hur, Kyung Jin;Woo, Min Ji;Kim, Ji Yoon;Saravanan, Manoharan;Kwon, Chan-Hyeok;Son, Yong Wook;Hur, Jang Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.328-335
    • /
    • 2015
  • BACKGROUND: The present investigation was aimed to predict the pre-harvest residue limits (PHRLs) of the fluopicolide and metrafenone on cherry tomato and to estimate their half-life and characteristics of the residues.METHODS AND RESULTS: Pesticides were treated once on cherry tomato in field 1 and 2 under the standard application rate. The samples were collected 7 times at the end of 0(2 hours after pesticides spaying), 1, 2, 3, 5, 7 and 10 days before harvest. Residues of fluopicolide and metrafenone were analyzed by the LC-MS/MS. In this study, the method limit of quantification (MLOQ) for both fluopicolide and metrafenone in cherry tomato was found to be 0.005 mg kg-1. Their recovery levels were 92.7∼94.8% and 82.6∼88.0%, shown with coefficient of variation of less than 10%. Half-life of fluopicolide and metrafenone in field 1 and 2 were found to be 15.0 days and 12.8 days, 18.9 days and 21.5 days, respectively.CONCLUSION: Based on the results, this study shows the level of PHRL on cherry tomato is 0.27 mg/kg for fluopicolide and 2.29 mg/kg for metrafenone at 10 days before harvesting. The present study indicates the residues of both pesticides on cherry tomato will be below maximum residue limit (MRL) at harvest.

Dissipation Pattern of Boscalid in Cucumber under Greenhouse Condition (시설 내 오이 재배 중 살균제 Boscalid의 잔류특성)

  • Lee, Jong-Hwa;Park, Hee-Won;Keum, Young-Soo;Kwon, Chan-Hyeok;Lee, Young-Deuk;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.1
    • /
    • pp.67-73
    • /
    • 2008
  • The dissipation patterns of a boscalid in cucumber under greenhouse condition was investigated to establish pre-harvest residue limit (PHRL) and biological half-life. Initial concentration of boscalid in cucumber at standard application rate was $7.29\;mg\;kg^{-1}$ and decreased to $0.04\;mg\;kg^{-1}$ after 15 days with half-life of 1.9 day, while the initial concentration was $14.69\;mg\;kg^{-1}$ and decreased to $0.11\;mg\;kg^{-1}$ after same period with half lift of 2.0 day at double application rate. PHRL was suggested by prediction curve derived from the decay curve of boscalid at double rate treatment. For example, $10.39\;mg\;kg^{-1}$ was calculated for 10 days before harvest, and $1.73\;mg\;kg^{-1}$ for 5 days. Dilution effect was major factor far the decrease of boscalid residue due to fast increasement of weight of cucumber during cultivation. Final residues level of boscalid was predicted based on the dissipation curve and guideline on safe use, when boscalid was used to control powdery mildew and gray mold. At standard rate application, $1.26\;mg\;kg^{-1}$ and $1.33\;mg\;kg^{-1}$ were calculated as final residue levels for control powdery mildew and gray mold, respectively, which are above the MRL(Meximum Residue Limit).

Dissipation characteristics of mandipropamid and thiamethoxam for establishment of pre-harvest residue limits in lettuce (상추의 생산단계 잔류허용기준 설정을 위한 농약 Mandipropamid 및 Thiamethoxam의 잔류소실특성 연구)

  • Yang, Seung-Hyun;Lee, Jae-In;Choi, Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.3
    • /
    • pp.267-274
    • /
    • 2020
  • The dissipation characteristics and kinetics of fungicide mandipropamid and insecticide thiamethoxam in lettuce under greenhouse conditions were investigated at three different lettuce-growing fields for estimating the pre-harvest residue limits (PHRLs). The analytical methods were fully validated for the quantitation of pesticide residues using High-Performance Liquid Chromatography-Photo Diode Array detector or Ultraviolet-Visible Detector and applied to real samples. The lettuces suitable for shipment were harvested during 10 days including pre-harvest interval after treatment at the recommended dose by safe-use guidelines. The initial mean residues in different fields were 6.68-17.87 and 4.96-8.31 mg/kg for mandipropamid and thiamethoxam, respectively, which decreased to 16-54 and 14-44% in 10 days. The clothianidin, a metabolite of thiamethoxam, was detected in <0.02 to 0.37 mg/kg. The dissipation of both pesticides followed first-order kinetics over a period of 10 days after application. Based on the residue data, the mean dissipation rate constant (λ) and biological half-lives (T1/2) were estimated to be -0.1060 and 6.5 days of mandipropamid and -0.1236 and 5.6 days of thiamethoxam. The PHRLs for lettuce on the 10th and 5th day before harvesting were calculated to be 63.24 and 43.56 mg/kg for mandipropamid, and 44.66 and 25.88 mg/kg for thiamethoxam, with -0.0746 and -0.1091 of the upper 95% confidence intervals of dissipation rate constant, respectively. This work would be useful as guidance for adjusting the shipment date and contribute to stabilizing the income of farmers in Korea.

Residue Dissipation Patterns of Indoxacarb and Pymetrozine in Broccoli under Greenhouse Conditions (시설재배 브로콜리 중 Indoxacarb 및 Pymetrozine의 잔류 소실특성)

  • Yang, Seung-Hyun;Lee, Jae-In;Choi, Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.75-82
    • /
    • 2020
  • BACKGROUND: This study was carried out to establish pre-harvest residue limits (PHRLs) of indoxacarb and pymetrozine in broccoli under greenhouse conditions, based on dissipation patterns and biological half-lives of pesticides during 10 days after application. METHODS AND RESULTS: The field studies were conducted in two different greenhouse, located in Chungju-si (Field 1) and Gunsan-si (Field 2). Samples were collected at 0, 1, 2, 3, 5, 7 and 10 days after spraying pesticide suspension. The analytical methods for indoxacarb and pymetrozine using HPLC-DAD were validated by recoveries ranging of 94.3-105.4% and 81.8-96.0%, respectively, and MLOQ (Method Limit of Quantification) of 0.05 mg/kg. Biological half-lives of indoxacarb and pymetrozine were 2.9 and 3.2-3.8 days in broccoli, respectively. The lower 95% confidence intervals of dissipation rate constant of indoxacarb were determined as 0.1508 (Field 1) and 0.2017 (Field 2), whereas those of pymetrozine were calculated as 0.1489 (Field 1) and 0.1577 (Field 2). CONCLUSION: The significant differences were not observed between the dissipation rates of indoxacarb and pymetrozine in broccoli. The major factor affecting residue dissipation was the dilution effect by fast growth. The PHRLs for 10 days prior to harvest were recommended as 30.06 (Field 1) and 18.07 (Field 2) mg/kg for indoxacarb, and 4.84 (Field 1) and 4.43 (Field 2) mg/kg for pymetrozine, respectively.

Residue Patterns and Biological Half-lives of Pyridalyl and Fluopicolide in Watermelon (수박 중 및 Pyridalyl 및 Fluopicolide의 잔류 특성 및 생물학적 반감기 산출)

  • Park, Ji-Su;Yang, Seung-Hyun;Choi, Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.1
    • /
    • pp.50-56
    • /
    • 2017
  • BACKGROUND: The present study was carried out to identify the residue patterns of insecticide pyridalyl and fungicide fluopicolide in watermelon and calculate the biological half-lives for establishing the pre-harvest residue limits (PHRLs). METHODSANDRESULTS:The watermelon samples for residue analysis were harvested 7 times during 0~10 days (Field 1) and 0~20 days (Field 2) after treatment of pesticides on watermelon in two different fields at the recommended dose, respectively. The residue analysis was conducted with HPLC/UVD. The method limit of quantitation (MLOQ) were set at 0.05 and 0.02 mg/kg, respectively, and overall mean recoveries were 81.2~90.5% for pyridalyl and fluopicolide. The residues in sample were stable for 43~47 days. The initial residue amount in field 1 and 2 were 0.12~0.16 mg/kg for pyridalyl and 0.23~0.24 mg/kg for fluopicolide, which were below maximum residue limit (MRL). The biological half-lives in field 1 and 2 were 26.9 and 17.9 days for pyridalyl and 16.6 and 94.2 days for fluopicolide, respectively. CONCLUSION: The PHRL for watermelon were estimated as 0.21 and 1.03 mg/kg for pyridalyl and flopicolide at 10 days before harvesting. The residue patterns of pyridalyl and fluopicolide were characterized by a very slow decrease of residue levels in watermelon.

Residual Characteristics of Bistrifluron and Chlorantraniliprole in Strawberry (Fragaria ananassa Duch.) for Establishing Pre-Harvest Residue Limit (생산단계 잔류허용기준 설정을 위한 딸기 중 bistrifluron과 chlorantraniliprole의 잔류 특성 연구)

  • Lee, Jae Won;Kim, Ji Yoon;Kim, Hee gon;Hur, Kyung Jin;Kwon, Chan Hyeok;Hur, Jang Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.1
    • /
    • pp.57-62
    • /
    • 2017
  • BACKGROUND: Pesticide residue analysis is essentially required for safety evaluation of agricultural products. Bistrifluron and chlorantraniliprole have been currently considered as potentials to deeply evaluate their residues in agricultural products because they are frequently found in strawberry. This work was performed to investigate the residual patterns of bistrifluron and chlorantraniliprole in strawberry after harvest. METHODS AND RESULTS: Strawberry was treated with bistrifluron and chlorantraniliprole 0, 1, 2, 3, 5, 7 and 10 days before harvest under greenhouse conditions. The strawberry samples were subjected to solvent and solid phase extractions followed by LC-MS/MS analysis. There covery percentages of bistrifluron and chlorantraniliprole for tified in the control samples ranged from approximately 82 to 103% with the method limit of 0.005 mg/kg. The concentrations of bistrifluron and chlorantraniliprole in strawberry samples decreased significantly in 10 days after treatment, giving the safety levels of 0.04 to 0.06 mg/kg at 10 days after application, as considered maximum residue limit. The half-lives of bistrifluron and chlorantraniliprole based on first order kinetics were determined to 6.3 days and 6.4 days, respectively. CONCLUSION: Bistrifluron and chlorantraniliprole are suggested to use in strawberry 10 days before harvest to reach residual safety levels.