• Title/Summary/Keyword: Pre-Classification

Search Result 662, Processing Time 0.03 seconds

Quantitatively Investigating the Effects of Multiple Strategies on Pre-Services Teachers' Mindset and Persistence

  • Meiners, Amanda;Choi, Kyong Mi;Hong, Dae
    • Research in Mathematical Education
    • /
    • v.23 no.2
    • /
    • pp.113-133
    • /
    • 2020
  • Pre-service teachers (PST) are students who are developing their mindset, persistence, instructional practices, and perception of tasks from two perspectives: as current students and as future teachers. As part of a larger study with PSTs engaged in a mindset intervention, this study quantitatively investigated PSTs mindset and persistence. During professional development (PD), PSTs engaged in multiple strategies (MS) tasks that promoted changes to PSTs mindset and persistence. PSTs' mindset pre- and post- PD were categorized after attending at least 4 interventions as fixed, mixed, or growth using the theory of intelligence, and their persistence as high or low using the Grit-S. Changes in categorization were noticed and explored for reasons of what could be done to make mindset interventions more effective such as consistently using challenging mathematics tasks with more open ended answers and focusing on discussion based mathematical lessons.

Design and implementation of malicious comment classification system using graph structure (그래프 구조를 이용한 악성 댓글 분류 시스템 설계 및 구현)

  • Sung, Ji-Suk;Lim, Heui-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.6
    • /
    • pp.23-28
    • /
    • 2020
  • A comment system is essential for communication on the Internet. However, there are also malicious comments such as inappropriate expression of others by exploiting anonymity online. In order to protect users from malicious comments, classification of malicious / normal comments is necessary, and this can be implemented as text classification. Text classification is one of the important topics in natural language processing, and studies using pre-trained models such as BERT and graph structures such as GCN and GAT have been actively conducted. In this study, we implemented a comment classification system using BERT, GCN, and GAT for actual published comments and compared the performance. In this study, the system using the graph-based model showed higher performance than the BERT.

A Study on Efficient Topography Classification of High Resolution Satelite Image (고해상도 위성영상의 효율적 지형분류기법 연구)

  • Lim, Hye-Young;Kim, Hwang-Soo;Choi, Joon-Seog;Song, Seung-Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.3 s.33
    • /
    • pp.33-40
    • /
    • 2005
  • The aim of remotely sensed data classification is to produce the best accuracy map of the earth surface assigning each pixel to its appropriate category of the real-world. The classification of satellite multi-spectral image data has become tool for generating ground cover map. Many classification methods exist. In this study, MLC(Maximum Likelihood Classification), ANN(Artificial neural network), SVM(Support Vector Machine), Naive Bayes classifier algorithms are compared using IKONOS image of the part of Dalsung Gun, Daegu area. Two preprocessing methods are performed-PCA(Principal component analysis), ICA(Independent Component Analysis). Boosting algorithms also performed. By the combination of appropriate feature selection pre-processing and classifier, the best results were obtained.

  • PDF

Drone Image Classification based on Convolutional Neural Networks (컨볼루션 신경망을 기반으로 한 드론 영상 분류)

  • Joo, Young-Do
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.97-102
    • /
    • 2017
  • Recently deep learning techniques such as convolutional neural networks (CNN) have been introduced to classify high-resolution remote sensing data. In this paper, we investigated the possibility of applying CNN to crop classification of farmland images captured by drones. The farming area was divided into seven classes: rice field, sweet potato, red pepper, corn, sesame leaf, fruit tree, and vinyl greenhouse. We performed image pre-processing and normalization to apply CNN, and the accuracy of image classification was more than 98%. With the output of this study, it is expected that the transition from the existing image classification methods to the deep learning based image classification methods will be facilitated in a fast manner, and the possibility of success can be confirmed.

Surface Classification and Its Threshold Value Selection for the Recognition of 3-D Objects (3차원 물체 인식을 위한 표면 분류 및 임계치의 선정)

  • 조동욱;백승재;김동원
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.20-25
    • /
    • 2000
  • This paper proposes the method of surface classification and threshold value selection for surface classification of the three-dimensional object recognition. The processings of three-dimensional image processing system consist of three steps, i.e, acquisition of range data, feature extraction and matching process. This paper proposes the method of shape feature extraction from the acquired rage data in the entire three-dimensional image processing system. In order to achieve these goals, firstly, this article proposes the surface classification method by using the distribution characteristics of sign value from range values. Also pre-existing method which uses the K-curvature and K-curvature has limitation in the practical threshold value selection. To overcome this, this article proposes the selection of threshold value for surface classification. Finally, the effectiveness of this article is demonstrated by the several experiments.

  • PDF

Attention Capsule Network for Aspect-Level Sentiment Classification

  • Deng, Yu;Lei, Hang;Li, Xiaoyu;Lin, Yiou;Cheng, Wangchi;Yang, Shan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1275-1292
    • /
    • 2021
  • As a fine-grained classification problem, aspect-level sentiment classification predicts the sentiment polarity for different aspects in context. To address this issue, researchers have widely used attention mechanisms to abstract the relationship between context and aspects. Still, it is difficult to effectively obtain a more profound semantic representation, and the strong correlation between local context features and the aspect-based sentiment is rarely considered. In this paper, a hybrid attention capsule network for aspect-level sentiment classification (ABASCap) was proposed. In this model, the multi-head self-attention was improved, and a context mask mechanism based on adjustable context window was proposed, so as to effectively obtain the internal association between aspects and context. Moreover, the dynamic routing algorithm and activation function in capsule network were optimized to meet the task requirements. Finally, sufficient experiments were conducted on three benchmark datasets in different domains. Compared with other baseline models, ABASCap achieved better classification results, and outperformed the state-of-the-art methods in this task after incorporating pre-training BERT.

Effects of Pressure Ulcer Classification System Education Program on Knowledge and Visual Discrimination Ability of Pressure Ulcer Classification and Incontinence-Associated Dermatitis for Hospital Nurses (욕창 분류체계교육프로그램이 병원간호사의 욕창 분류체계와 실금관련 피부염에 대한 지식과 시각적 감별 능력에 미치는 효과)

  • Lee, Yun Jin;Park, Seungmi
    • Journal of Korean Biological Nursing Science
    • /
    • v.16 no.4
    • /
    • pp.342-348
    • /
    • 2014
  • Purpose: The purpose of this study was to examine the effects of pressure ulcer classification system education on hospital nurses' knowledge and visual discrimination ability of pressure ulcer classification system and incontinence-associated dermatitis. Methods: One group pre- and post-test was used. A convenience sample of 96 nurses participating in pressure ulcer classification system education, were enrolled in single institute. The education program was composed of a 50-minute lecture on pressure ulcer classification system and case-studies. The pressure ulcer classification system and incontinence-associated dermatitis knowledge test and visual discrimination tool, consisting of 21 photographs including clinical information were used. Paired t-test was performed using SPSS/WIN 18.0. Results: The overall mean difference of pressure ulcer classification system knowledge (t=4.67, p<.001) and visual discrimination ability (t=10.58, p<.001) were statistically and significantly increased after pressure ulcer classification system education. Conclusion: Overall understanding of pressure ulcer classification system and incontinence-associated dermatitis after pressure ulcer classification system education was increased, but tended to have lack of visual discrimination ability regarding stage III, suspected deep tissue injury. Differentiated continuing education based on clinical practice is needed to improve knowledge and visual discrimination ability for pressure ulcer classification system, and comparison experiment research is required to evaluate its effects.

Research on Multi-facted News Article Classification Models Classifying Subjects, Geographies and Genres (심층 주제, 지역, 장르를 모두 분류할 수 있는 다면적 뉴스 기사 자동 분류 모델 연구)

  • Hyojin Lee;SungPil Choi
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.58 no.3
    • /
    • pp.65-89
    • /
    • 2024
  • This study developed a model to classify news articles into categories of topic, genre, and region using a Korean Pre-trained Language model. To achieve this, a new news article classification system was designed by referring to the classification systems of domestic media outlets. The topic and genre classification models were implemented as hierarchical classification models that link the main categories and subcategories, and their performance was compared with that of an integrated category model. The evaluation results showed that the hierarchical structure classification model had the advantage of providing more precise categorization in ambiguous or overlapping categories compared to the integrated category model. For regional classification of news articles, a model was built to classify into 18 categories, and for regional news articles, the regional characteristics were clearly reflected in the text, resulting in high performance. This study demonstrated the effectiveness of classifying news articles from multiple perspectives-topic, genre, and region-and emphasized the significance of suggesting the potential for a multi-dimensional news article classification service that meets user needs.

Music Genre Classification based on Musical Features of Representative Segments (대표구간의 음악 특징에 기반한 음악 장르 분류)

  • Lee, Jong-In;Kim, Byeong-Man
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.11
    • /
    • pp.692-700
    • /
    • 2008
  • In some previous works on musical genre classification, human experts specify segments of a song for extracting musical features. Although this approach might contribute to performance enhancement, it requires manual intervention and thus can not be easily applied to new incoming songs. To extract musical features without the manual intervention, most of recent researches on music genre classification extract features from a pre-determined part of a song (for example, 30 seconds after initial 30 seconds), which may cause loss of accuracy. In this paper, in order to alleviate the accuracy problem, we propose a new method, which extracts features from representative segments (or main theme part) identified by structure analysis of music piece. The proposed method detects segments with repeated melody in a song and selects representative ones among them by considering their positions and energies. Experimental results show that the proposed method significantly improve the accuracy compared to the approach using a pre-determined part.

The Development of a Trial Curriculum Classification and Coding System Using Group Technology

  • Lee, Sung-Youl;Yu, Hwa-Young;Ahn, Jung-A;Park, Ga-Eun;Choi, Woo-Seok
    • Journal of Engineering Education Research
    • /
    • v.17 no.4
    • /
    • pp.43-47
    • /
    • 2014
  • The rapid development of science & technology and the globalization of society have accelerated the fractionation and specialization of academic disciplines. Accordingly, Korean colleges and universities are continually dropping antiquated courses to make room for new courses that better meet societal demands. With emphasis placed on providing students with a broader range of choices in terms of course selection, compulsory courses have given way to elective courses. On average, 4 year institutions of higher learning in Korea currently offer somewhere in the neighborhood of 1,000 different courses yearly. The classification of an ever growing list of courses offered and the practical use of such data would not be possible without the aid of computers. For example, if we were able to show the pre/post requisite relationship among various courses as well as the commonalities in substance among courses, such data generated regarding the interrelationship of different courses would undoubtedly greatly benefit the students, as well as the professors, during course registration. Furthermore, the GT system's relatively simple approach to course classification and coding will obviate the need for the development of a more complicated keyword based search engine, and hopefully contribute to the standardization of the course coding scheme in the future..Therefore, as a sample case project, this study will use GT to classify and code all courses offered at the College of Engineering of K University, thereby developing a system that will facilitate the scanning of relevant courses.