• Title/Summary/Keyword: Prandtl number

Search Result 188, Processing Time 0.034 seconds

Characteristics of the Mixed Convection Flow and Heat Transfer in a Channel with Open Cavity (개방된 캐비티를 가진 채널 내에서의 혼합대류 유동과 열전달 특성)

  • Ko, Y.C.;Bae, D.S.;Kim, N.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.56-64
    • /
    • 2007
  • A numerical simulation is carried out mixed convection in horizontal channel with a heat source from below of rectangular cavity. Finite volume method was employed for the discretization and PISO algorithm was used for calculating pressure term. The parameters governing the problem are the Reynolds number ($10^{-2}{\leq}Re{\leq}50$), the Rayleigh number ($10^3{\leq}Ra{\leq}2.06{\times}10^5$), the Prandtl number ($0.72{\leq}Pr{\leq}909$), the aspect ratio ($0.5{\leq}AR=W/H{\leq}2$) and the angle of inclination ($0^{\circ}{\theta}60^{\circ}$). Mean Nusselt number distributions were obtained and effect of Reynolds number, Rayleigh number and Prandtl number on mixed convection in the horizontal channel with rectangular cavity were investigated.

  • PDF

Numerical Analysis of Turbulent Flow and Heat Transfer in a Rectangular Duct with a 180° Bend Degree (직사각단면을 갖는 180°곡관내의 난류 유동및 열전달에 관한 수치해석적 연구)

  • Choi, Y.D.;Moon, C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.325-336
    • /
    • 1994
  • A numerical simulation of velocity and temperature fields and Nusselt number distributions is performed by using the algebraic stress model (ASM) for the velocity profiles and low Reynolds number ${\kappa}-{\varepsilon}$ model and the algebraic heat flux model(AHFM) for turbulent heat transfer in a $180^{\circ}$ bend with a constant wall heat flux. In the low Reynolds number ${\kappa}-{\varepsilon}$ model, turbulent Prandtl number is modified by considering the streamline curvature effect and the non-equilibrium effect between turbulent kinetic energy production and dissipation rate. Every heat flux term presented in the transport equation of turbulent heat flux is reduced to algebraic expressions in a way similar to algebraic stress model. Also. in the wall region, low Reynods number algebraic heat flux model(AHFM) is applied.

  • PDF

Thermal diffusion and diffusion thermo effects on an unsteady heat and mass transfer magnetohydrodynamic natural convection Couette flow using FEM

  • Raju, R. Srinivasa;Reddy, G. Jithender;Rao, J. Anand;Rashidi, M.M.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.349-362
    • /
    • 2016
  • The numerical solutions of unsteady hydromagnetic natural convection Couette flow of a viscous, incompressible and electrically conducting fluid between the two vertical parallel plates in the presence of thermal radiation, thermal diffusion and diffusion thermo are obtained here. The fundamental dimensionless governing coupled linear partial differential equations for impulsive movement and uniformly accelerated movement of the plate were solved by an efficient Finite Element Method. Computations were performed for a wide range of the governing flow parameters, viz., Thermal diffusion (Soret) and Diffusion thermo (Dufour) parameters, Magnetic field parameter, Prandtl number, Thermal radiation and Schmidt number. The effects of these flow parameters on the velocity (u), temperature (${\theta}$) and Concentration (${\phi}$) are shown graphically. Also the effects of these pertinent parameters on the skin-friction, the rate of heat and mass transfer are obtained and discussed numerically through tabular forms. These are in good agreement with earlier reported studies. Analysis indicates that the fluid velocity is an increasing function of Grashof numbers for heat and mass transfer, Soret and Dufour numbers whereas the Magnetic parameter, Thermal radiation parameter, Prandtl number and Schmidt number lead to reduction of the velocity profiles. Also, it is noticed that the rate of heat transfer coefficient and temperature profiles increase with decrease in the thermal radiation parameter and Prandtl number, whereas the reverse effect is observed with increase of Dufour number. Further, the concentration profiles increase with increase in the Soret number whereas reverse effect is seen by increasing the values of the Schmidt number.

A Numerical and Experimental Study of Natural Convection in the Annulus between Horizontal Non-Circular Cylinders with a Uniform Gap (균일한 간격을 가진 비원형환상공간에서의 자연대류에 관한 수치해석 및 실험적 연구)

  • Bai, D.S.;Kwon, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.4
    • /
    • pp.257-267
    • /
    • 1990
  • A numerical and experimental investigation has been carried out to understand a characteristic of natural convection within a horizontal non-circular annulus. A finite-difference method has been used to solve the governing equations numerically. The effect of Rayleigh number. Prandtl number, aspect ratio and diameter ratio is studied analytically. The ranges of the parameters studied herein are Rayleigh number from $10^3$ to $2{\times}10^4$, Prandtl number from 0.1 to 10, aspect ratio from 0.25 to 1.5 and diameter ratio from 1.5 to 9.0. A Mach-Zehnder interferometer is used to obtain isothermal fringes for a diameter ratio Do/Di=2.6 and aspect ratio H/L=0.75 experimentally. A comparison between the experimental and numerical results under similar conditions shows good agreement.

  • PDF

The Effect of Main Stream Turbulence on the Heat Transfer Around a Cylinder Surface (주 유동의 난류특성이 원통 표면에서의 열전달에 미치는 영향에 관한 연구 - 수치 해석적 고찰 -)

  • Park, J.H.;Choi, Y.K.;Ryou, H.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.3
    • /
    • pp.186-196
    • /
    • 1991
  • Numerical analysis has been performed to investigate the effects of the turbulence intensity and Prandtl number on the local heat transfer around a circular cylinder in crossflow. The governing equations were reformulated in a non-orthogonal coordinate system with Cartesian velocity components and discretised by the finite volume method with a non-staggered variable arrangement. For laminar flow, the calculations were performed for the Reynolds numbers 26 and 200. The results showed good agreement with the experimental results. For turbulent flow of the Reynolds number $1{\times}10^5$ and $2{\times}10^6$, the results showed that with an increase in the turbulent intensity in the main stream, the local Nusselt number increases in the front region of the circular cylinder. But the effect of turbulent intensity on the local Nusselt number diminishes in the wake region. The influence of Prandtl numbers show similar trend to that of turbulent intensity.

  • PDF

A theoretical analysis on the viscous plane stagnation-flow solidification problem (평면 점성 정체 유동 응고 문제에 대한 이론적 해석)

  • 유주식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.260-270
    • /
    • 1998
  • The viscous plane stagnation-flow solidification problem is theoretically investigated. An analytic solution at the beginning of solidification is obtained by expanding the temperature and thickness of solidified layer in powers of time. An exact expression for the steady-state thickness of solidified layer is also obtained. The .fluid flow toward the cold substrate inhibits the solidification process. As Stefan number becomes larger, or Prandtl number becomes smaller, the solidification is more strongly inhibited by the fluid flow. The transient heat flux at the liquid side of solid-liquid interface is increased, as Stefan number or Prandtl number is increased.

  • PDF

A Numerical Study for Natural Convective Heat Transfer by Finite Element Method (유한요소법을 이용한 자연대류열전달 수치해석 연구)

  • ;Ashley F. Emery
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.113-121
    • /
    • 1998
  • In natural convection flows, the fluid velocities are highly dependent on the thermal field and property variations can have a strong effect on both the flow and thermal fields. To examine the effect of property variations, at first, numerical analyses covering wide range of the Prandtl number under the same Rayleigh numbers have been carried out. Next, we have modeled the viscosity and thermal conductivity as parabolic functions of temperature and a comprehensive set of numerical solutions have been obtained to understand the effect. The Prandtl number dependence of Nusselt number is fairly strong even though the effect is still weak compared to the Rayleigh number dependence. When thermophysical properties are dependent on temperature, the flow field showed a fairly weak variation except near boundaries, whereas the temperature field is strongly affected, especially by the temperature dependent thermal conductivity.

  • PDF

Oscillatory Thermocapillary Flow in Cylindrical Columns of High Prand시 Number Fluids

  • Lee, Kyu-Jung;Yasuhiro Kamotani;Simon Ostrach
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.764-775
    • /
    • 2001
  • Oscillartory thermocapillary flow of high Prandtl number fluids in the half-zone configuration is investigated. Based on experimental observations, one oscillation cycle consists of an active period where the surface flow is strong and the hot corner region is extended and a slow period where the opposite occurs. It is found that during oscillations the deformation of free surface plays an important role and a surface deformation parameter S correlates the experimental data well on the onset of oscillations. A scaling analysis is performed to analyze the basic steady flow in the parametric ranges of previous ground-based experiments and shows that the flow is viscous dominant and is mainly driven in the hot corner. The predicted scaling laws agree well with the numerical results. It is postulated that the oscillations are caused by a time lag between the surface and return flows. A deformation parameter S represents the response time of the return flow to the surface flow.

  • PDF

Lmainar flow and heat transfer of the fluid with low prandtl number in the entrance region of a circular pipe (낮은 프란틀수를 가지는 유체의 원관 입구 층류유동 및 열전달)

  • ;;Yoo, Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.4
    • /
    • pp.284-292
    • /
    • 1981
  • The flow of fluid with low prandtl number in the entrance region of a circular pipe has been considered, where the wall temperature is maintained to be constant. A finite difference method is used for the integral form of the governing equations in order that they satisfy the conservative properties of the numerical solutions. It is confirmed that the hydrodynamic entrance length and be divided into growing boundary layer region and fully viscous region, which is compared with existing results obtained by using boundary layer approximations. By assuning the developing velocity profile in the entrance region, the thermal entrance length is estimated and the local Nusselt number is obtained at various locations along the axial dirction.