• Title/Summary/Keyword: Practice parameter

Search Result 201, Processing Time 0.02 seconds

The characteristics on dose distribution of a large field (넓은 광자선 조사면($40{\times}40cm^2$ 이상)의 선량분포 특성)

  • Lee Sang Rok;Jeong Deok Yang;Lee Byoung Koo;Kwon Young Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.15 no.1
    • /
    • pp.19-27
    • /
    • 2003
  • I. Purpose In special cases of Total Body Irradiation(TBI), Half Body Irradiation(HBI), Non-Hodgkin's lymphoma, E-Wing's sarcoma, lymphosarcoma and neuroblastoma a large field can be used clinically. The dose distribution of a large field can use the measurement result which gets from dose distribution of a small field (standard SSD 100cm, size of field under $40{\times}40cm2$) in the substitution which always measures in practice and it will be able to calibrate. With only the method of simple calculation, it is difficult to know the dose and its uniformity of actual body region by various factor of scatter radiation. II. Method & Materials In this study, using Multidata Water Phantom from standard SSD 100cm according to the size change of field, it measures the basic parameter (PDD,TMR,Output,Sc,Sp) From SSD 180cm (phantom is to the bottom vertically) according to increasing of a field, it measures a basic parameter. From SSD 350cm (phantom is to the surface of a wall, using small water phantom. which includes mylar capable of horizontal beam's measurement) it measured with the same method and compared with each other. III. Results & Conclusion In comparison with the standard dose data, parameter which measures between SSD 180cm and 350cm, it turned out there was little difference. The error range is not up to extent of the experimental error. In order to get the accurate data, it dose measures from anthropomorphous phantom or for this objective the dose measurement which is the possibility of getting the absolute value which uses the unlimited phantom that is devised especially is demanded. Additionally, it needs to consider ionization chamber use of small volume and stem effect of cable by a large field.

  • PDF

Role of PET in Evaluating Indeterminate Solitary Pulmonary Nodule with CT (CT상 악성여부가 불명확한 단일 폐결절에서의 양전자방출단층촬영술의 유용성)

  • Yoon, Seok-Boo;Choi, Joon-Young;Kim, Sun-Jung;Choi, Yong;Choe, Yearn-Seong;Lee, Kyung-Han;Kim, Sang-Eun;Kwon, O-Jung;Lee, Kyung-Soo;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.1
    • /
    • pp.83-89
    • /
    • 1997
  • About one-third of radiologically indeterminate solitary pulmonary nodules (SPN) are eventually turned out to be malignant. It is very important to noninvasively determine whether the SPN is malignant or not for the decision of its way of management. PET imaging is highlighted by its unique ability of imaging the function and metabolism of cells. Glucose metabolism is increased in malignant transformed cells. We peformed FDG-PET studies in patients who had radiologically indeterminate SPN and compared the findings with histologic diagnoses to assess the diagnostic accuracy in the detection of malignancy and to decide which parameter is the most suitable for clinical practice among peak SUV (pSUV), average SUV (aSUV), 50/10 ratio, and time-activity curve (TAC), Thirty patients were included in this study and the most useful parameter was pSUV. The sensitivity and specificity in the detection of malignant SPN using 3.5 as a cut off pSUV were both 87%. Interestingly, all 2 false-negative cases were bronch-ioloalveolar carcinoma on histologic examination. If these cases, which could be strongly suspected by CT findings, were excluded, the sensitivity of pSUV was 100%. In conclusion, PET imaging is very helpful for determining malignancy in indeterminate SPN and pSUV is a conveniently measurable parameter which is valuable for interpretation.

  • PDF

Comparisons of the Performance with Bayes Estimator and MLE for Control Charts Based on Geometric Distribution (기하분포에 기초한 관리도에서 베이즈추정량과 최대우도추정량 사용의 성능 비교)

  • Hong, Hwiju;Lee, Jaeheon
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.5
    • /
    • pp.907-920
    • /
    • 2015
  • Charts based on geometric distribution are effective to monitor the proportion of nonconforming items in high-quality processes where the in-control proportion nonconforming is low. The implementation of this chart is often based on the assumption that in-control proportion nonconforming is known or accurately estimated. However, accurate parameter estimation is very difficult and may require a larger sample size than that available in practice for high-quality process where the proportion of nonconforming items is very small. An inaccurate estimate of the parameter can result in estimated control limits that cause unreliability in the monitoring process. The maximum likelihood estimator (MLE) is often used to estimate in-control proportion nonconforming. In this paper, we recommend a Bayes estimator for the in-control proportion nonconforming to incorporate practitioner knowledge and avoid estimation issues when no nonconforming items are observed in the Phase I sample. The effects of parameter estimation on the geometric chart and the geometric CUSUM chart are considered when the MLE and the Bayes estimator are used. The results show that chart performance with estimated control limits based on the Bayes estimator is generally better than that based on the MLE.

Direct Heat Treatment of Alloyed Steel Forging (가공열을 이용한 합금강 단조품의 열처리)

  • Kwon, Y.N.;Kim, T.O.;Kwon, Y.C.;Park, D.G.;Lee, S.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.431-434
    • /
    • 2008
  • In the present study, direct quenching of alloyed steel after hot forging was simulated using commercial finite element program, $FORGE^{TM}$. A typical heat treatment of alloyed steels consists of quenching for hard martensite and subsequent tempering for toughness. In the practice, forgings which cool down to room temperature are heated to temperature of austenite regime. As investigated in the present study, direct quenching of hot forged stock would be beneficial in terms of energy saving. This process has already been propose and termed as ausforging or forged hardening. However, it is well known that quenching temperature would be the most critical factor to control heat treated forging properties. And it is very difficult to control quenching temperature when forged stock gets directly quenched after forging. In this study, we have calculated final forging temperature of stock. Also, quenching simulation was conducted using a series of material parameter which were also calculated using JMATpro, a commercial program for physical properties of materials.

  • PDF

Empirical Equations Predicting Major Parameters for Simulating Cyclic Behavior of Rectangular HSS Braces (장방형 각형강관 가새부재 이력거동 예측을 위한 주요변수의 경험식 제안)

  • Han, Sang Whan;Sung, Min Soo;Mah, Dongjun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.137-144
    • /
    • 2017
  • The cyclic behavior of braces is complex due to their asymmetric properties in tension and compression. For accurately simulating the cyclic curves of braces, it is important to predict the major parameters such as cyclic brace growth, cyclic buckling load, incidence local buckling and fracture with good precision. For a given brace, the most accurate values of these parameters can be estimated throughout experiments. However, it is almost impossible to conduct experiments whenever an analytical model has to be established for many braces in building structures due to enormous cost and time. For avoid such difficulties, empirical equations for predicting constituent parameters are proposed from regression analyses based on test results of various braces. This study focuses on rectangular hollow structural section(HSS) steel braces, which have been popularly used in construction practice owing to its sectional efficiency.

The Revised Korean Practice Parameter for the Treatment of Attention-Deficit Hyperactivity Disorder (I) - Clinical Presentation and Comorbidity - (주의력결핍 과잉행동장애 한국형 치료 권고안 개정안(I) - 서론, 임상양상 및 공존질환 -)

  • Kim, Eun Jin;Kim, Yunsin;Seo, Wan Seok;Lee, So Hee;Park, Eun Jin;Bae, Seung-Min;Shin, Dongwon
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.28 no.2
    • /
    • pp.46-57
    • /
    • 2017
  • Attention-deficit hyperactivity disorder (ADHD) is a common psychiatric disorder that can affect individuals across their lifespan. It is characterized by the core symptoms of inattention, impulsivity and hyperactivity. ADHD develops as a result of the complex interplay between genetic and environmental factors. Children and adults with ADHD usually suffer concomitantly from other psychiatric comorbidities, including both externalizing and internalizing disorders. It is associated with functional impairment and poor long-term outcomes. This review aims to summarize the key findings from recent research into ADHD and its prevalence, core symptoms, cause and comorbidities from childhood to adulthood.

A Study on the Correction Factor of Flow Angel by using the One Dimentional Performance Model of Torque Converter (토크 컨버터의 1차원 성능 모델을 이용한 유동 각도 보정 계수에 관한 연구)

  • Im, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.506-517
    • /
    • 2000
  • One dimensional performance model has been used for the design of torque converter. The model is based on the concept of constant mean flow path and constant flow angle. These constant-assumed para meters make the design procedure to be simple. In practice, some parameters are usually replaced with geometric raw data and, the constant experiential correction factors have been used to minimize the design error. These factors have no definite physical meaning and so they cannot be applied confidently to the other design condition. In this study, the detail dynamic model of torque converter is presented to establish the theoretical background of correction factors. To verify the validity of theoretical model, steady state performance test was carried out on the several input speed. The oil temperature effect on the performance is analysed and adjusted. The constant equivalent flow angles are determined at a part of performance region by comparing the theoretical model and the test data. The sensitivity of correction factors to the input speeds are studied and the change of torus flow is presented.

Visibility detection approach to road scene foggy images

  • Guo, Fan;Peng, Hui;Tang, Jin;Zou, Beiji;Tang, Chenggong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4419-4441
    • /
    • 2016
  • A cause of vehicle accidents is the reduced visibility due to bad weather conditions such as fog. Therefore, an onboard vision system should take visibility detection into account. In this paper, we propose a simple and effective approach for measuring the visibility distance using a single camera placed onboard a moving vehicle. The proposed algorithm is controlled by a few parameters and mainly includes camera parameter estimation, region of interest (ROI) estimation and visibility computation. Thanks to the ROI extraction, the position of the inflection point may be measured in practice. Thus, combined with the estimated camera parameters, the visibility distance of the input foggy image can be computed with a single camera and just the presence of road and sky in the scene. To assess the accuracy of the proposed approach, a reference target based visibility detection method is also introduced. The comparative study and quantitative evaluation show that the proposed method can obtain good visibility detection results with relatively fast speed.

Performance evaluation of suspended ceiling systems using shake table test

  • Ozcelik, Ozgur;Misir, Ibrahim S.;Saridogan, Serhan
    • Structural Engineering and Mechanics
    • /
    • v.58 no.1
    • /
    • pp.121-142
    • /
    • 2016
  • The national standard being used in Turkey for suspended ceiling systems (SCS) regulates material and dimensional properties but does not contain regulations regarding installation instructions which cause substandard applications of SCSs in practice. The lack of installation instructions would potentially affect the dynamic performance of these systems. Also, the vast majority of these systems are manufactured using substandard low-quality materials, and this will inevitably increase SCS related damages during earthquakes. The experimental work presented here focuses on the issue of dynamic performance of SCSs with different types of carrier systems (lay-on and clip-in systems), different weight conditions, and material-workmanship qualities. Moreover, the effects of auxiliary fastening elements, so called seismic perimeter clips, in improving the dynamic performance of SCSs were experimentally investigated. Results show that clip-in ceiling system performs better than lay-on system regardless of material and workmanship qualities. On the other hand, the quality aspect becomes the most important parameter in affecting the dynamic performance of lay-on type systems as opposed to tile weights and usage of perimeter clips. When high quality system is used, tile weight does not change the performance of lay-on system, however in poor quality system, tile weight becomes an important factor where heavier tiles considerably decrease the performance level. Perimeter clips marginally increase the dynamic performance of lay-on ceiling system, but it has no effect on the clip-in ceiling system under the shaking levels considered.

Insight into coupled forced vibration method to identify bridge flutter derivatives

  • Xu, Fuyou;Ying, Xuyong;Zhang, Zhe
    • Wind and Structures
    • /
    • v.22 no.3
    • /
    • pp.273-290
    • /
    • 2016
  • The flutter derivatives of bridge decks can be efficiently identified using the experimentally and/or numerically coupled forced vibration method. This paper addresses the issue of inherent requirement for adopting different frequencies of three modes in this method. The aerostatic force components and the inertia of force and moment are mathematically proved to exert no influence on identification results if the signal length (t) is integer (n=1,2,3...) times of the least common multiple (T) of three modal periods. It is one important contribution to flutter derivatives identification theory and engineering practice in this study. Therefore, it is unnecessary to worry about the determination accuracy of aerostatic force and inertia of force and moment. The influences of signal length, amplitude, and frequency ratio on flutter derivative are thoroughly investigated using a bridge example. If the signal length t is too short, the extraction results may be completely wrong, and particular attention should be paid to this issue. The signal length t=nT ($n{\geq}5$) is strongly recommended for improving parameter identification accuracy. The proposed viewpoints and conclusions are of great significance for better understanding the essences of flutter derivative identification through coupled forced vibration method.