• 제목/요약/키워드: Practical astronomy

검색결과 51건 처리시간 0.024초

「혼천전도」의 투영법 고찰 (A STUDY ON THE PROJECTION METHOD OF THE 「HON-CHON-JEON-DO」)

  • 김광태;조용한
    • 천문학논총
    • /
    • 제34권1호
    • /
    • pp.1-16
    • /
    • 2019
  • "Hon-Chon-Jeon-Do" is a woodcut star map with the size of $79.4cm{\times}127.5cm$, and was widely disseminated as it was made into a set with Kim, Jung Ho's "Yeoji-Jeon-Do". This study confirmed that Yixiang kaocheng xubian ("의상고성속편") star catalogue was used as a source to produce the star map, and the stereographic projection was applied with the projection center being the mid-point (Q) between the celestial and ecliptic north poles. The 'mid-circle' around the Q is arisen between the equator and the ecliptic, and on this circle, the hour angle and the ecliptic longitude of a star can be marked using the same scale. This means that the hour of the day and the season of the year can be read on the same dial of the mid-circle, and the application of this character in the practical use was the key point of the star map production. By observing either transits or positions of the 28 xiu (宿), it is easy to find the corresponding season and time by simply reading the dial on the mid-circle. This is just the function of a portable almanac and thus by disseminating it widely, the convenience of the people would have been promoted. For this reason, it can be stated that "Hon-Chon-Jeon-Do" was a practical astronomical tool which was produced by the western astronomical projection method and was used to find time and season. Choi, Han Ki and Kim, Jung Ho are strong candidates for the makers of this star map. The time of production is estimated to be 1848 ~ 1857, and "Hon-Chon-Jeon-Do" could be regarded as a good contributor to popularization of astronomy in the late Joseon Dynasty.

TILT CORRECTION FOR A WIDE-FIELD ON-AXIS TELESCOPE USING THE SYMMETRICITY OF OPTICAL ABERRATIONS

  • Lee, Chung-Uk;Kim, Yunjong;Kim, Seung-Lee;Lee, Dong-Joo;Cha, Sang-Mok;Lee, Yongseok;Kim, Dong-Jin
    • 천문학회지
    • /
    • 제54권4호
    • /
    • pp.113-119
    • /
    • 2021
  • It is difficult for observers to conduct an optical alignment at an observatory without the assistance of an optical engineer if optomechanical parts are to be replaced at night. We present a practical tilt correction method to obtain the optimal optical alignment condition using the symmetricity of optical aberrations of a wide-field on-axis telescope at night. We conducted coarse tilt correction by visually examining the symmetry of two representative star shapes obtained at two guide chips facing each other, such as east-west or north-south pairs. After coarse correction, we observed four sets of small stamp images using four guide cameras located at each cardinal position by changing the focus positions in 10-㎛ increments and passing through the optimum focus position in the range of ±200 ㎛. The standard deviation of each image, as a function of the focus position, was fitted with a second-order polynomial function to derive the optimal focus position at each cardinal edge. We derived the tilt angles from the slopes converted by the distance and the focus position difference between two paired guide chip combinations such as east-west and north-south. We used this method to collimate the on-axis wide-field telescope KMTNet in Chile after replacing two old focus actuators. The total optical alignment time was less than 30 min. Our method is practical and straightforward for maintaining the optical performance of wide-field telescopes such as KMTNet.

면천체(EXTENDED OBJECTS)에 대한 긴 슬릿 분광관측 연구 (LONG-SLIT SPECTROSCOPY FOR EXTENDED OBJECTS)

  • 성언창
    • 천문학논총
    • /
    • 제15권spc1호
    • /
    • pp.39-60
    • /
    • 2000
  • We will discuss two-dimmensional spectrophotometry including long-slit spectroscopy and narrow-band imaging. The basic principles, applications, and techniques of observations and data reduction of spectroscopy and spectrophotometry for extended objects are described. This discussion will focus on practical long-slit spectroscopy using a Cassegrain spectrograph attached with 2 or 4m class telescopes and on imaging spectrophotometry using narrow-band interference filter sets. We will discuss scientific applications.

  • PDF

한국 과학과 교육과정 내 천문학 내용 분석 (ANALYSIS OF ASTRONOMY CONTENT IN NATIONAL SCIENCE CURRICULUM OF KOREA)

  • 심현진;권우진;김도형;박찬경;손정주;송인옥;안성호;오수연;이정애;임범두
    • 천문학논총
    • /
    • 제38권3호
    • /
    • pp.125-145
    • /
    • 2023
  • This study investigates the integration of astronomy-related topics in the Korean national science curricula spanning from 1945 to 2023. We analyze the placement and extent of astronomy content across different school levels. Astronomy contents in the science curricula have changed in response to social needs (e.g., practical knowledge required for agriculture and fishery) and advancement in astronomical research (e.g., the discovery of exoplanets and the suggestion of new cosmological parameters). Contents addressing the motions of celestial objects and stellar physical properties have remained relatively consistent. In the latest 2022 revised national curriculum, scheduled for implementation in 2024, several elements, such as coordinate systems, have been removed, while the inquiry activities using digital tools are emphasized. The incorporation of the cosmic perspectives in the national curriculum, as well as astronomy education within the context of education for sustainable development, remains limited even in the most recent curriculum. For future life revisions, the active participation of researchers is needed to reflect the latest astronomical research progress and scientific characteristics in the field of astronomy.

Integral Field Spectroscopic Data Reduction Method for High Resolution Infrared Observation

  • Lee, Sung-Ho;Pak, Soo-Jong;Choi, Min-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권4호
    • /
    • pp.309-318
    • /
    • 2010
  • We introduce a technical approach for reducing three-dimensional infrared (IR) spectroscopic data generated by integral field spectroscopy or slit-scanning observations. The first part of data reduction using IRAF presents a guideline for processing spectral images from long-slit IR spectroscopy. Multichannel image reconstruction, Image Analysis and Display (MIRIAD) is used in the later part to construct and analyze the data cubes which contain spatial and kinematic information of the objects. This technic has been applied to a sample data set of diffuse 2.1218 ${\mu}m$ $H_2$ 1-0 S(1) emission features observed by slit-scanning around Sgr A East in the Galactic center. Details of image processing for the high-dispersion infrared data are described to suggest a sequence of contamination cleaning and distortion correction. Practical solutions for handling data cubes are presented for survey observations with various configurations of slit positioning.

DESIGN CONCEPT FOR SINGLE CHIP MOSAIC CCD CONTROLLER

  • HAN WONYONG;JIN Ho;WALKER DAVID D.;CLAYTON MARTIN
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.389-390
    • /
    • 1996
  • The CCDs are widely used in astronomical observations either in direct imaging use or spectroscopic mode. However, the areas of available sensors are too small for large imaging format. One possibility to obtain large detection area is to assemble mosaics of CCD, and drive them simultaneously. Parallel driving of many CCDs together rules out the possibility of individual tuning; however, such optimisation is very important, when the ultimate low light level performance is required, particularly for new, or mixed devices. In this work, a new concept is explored for an entirely novel approach, where the drive waveforms are multiplexed and interleaved. This simultaneously reduces the number of leadout connections and permits individual optimisation efficiently. The digital controller can be designed within a single EPLD (Erasable Programmable Logic Device) chip produced by a CAD software package, where most of the digital controller circuits are integrated. This method can minimise the component. count., and improve the system efficiency greatly, based on earlier works by Han et a1. (1996, 1994). The system software has an open architecture to permit convenient modification by the user, to fit their specific purposes. Some variable system control parameters can be selected by a user with a wider range of choice. The digital controller design concept allows great flexibility of system parameters by the software, specifically for the compatibility to deal with any number of mixed CCDs, and in any format, within the practical limit.

  • PDF

우주생명현상과 성간천체 탐사 전망 (THE PROSPECT OF INTERSTELLAR OBJECT EXPLORATIONS FOR SEARCHING LIFE IN COSMOS)

  • Minsun Kim;Ryun Young Kwon;Thiem Hoang;Sungwook E. Hong
    • 천문학논총
    • /
    • 제38권2호
    • /
    • pp.25-36
    • /
    • 2023
  • Since interstellar objects like 1I/'Oumuamua and 2I/Borisov originate from exoplanetary systems, even if we do not visit the exoplanetary systems, flyby, rendezvous, and sample return missions of interstellar objects can provide clues to solve the mysteries of cosmic life phenomena such as the origin of exoplanetary systems, galactic evolution, biosignatures (or even technosignatures), and panspermia. In this paper, we review space missions for interstellar object exploration in the stage of mission design or concept study such as Project Lyra, Bridge, Comet Interceptors, and LightcraftTM. We also review space missions, OSIRIS-REx and NEA Scout, designed for Near Earth Asteroids(NEA) explorations, to investigate the current state of basic technologies that can be extended to explore interstellar objects in a velocity of ~ 6AU/year. One of the technologies that needs to be developed for interstellar object exploration is a spacecraft propulsion method such as solar sail, which can catch up with the fast speed of interstellar objects. If this kind of propulsion becomes practical for space explorations, interstellar object explorations will mark a new era and serve as a driving force to provide evidences of cosmic life.

PREDICTION OF DAILY MAXIMUM X-RAY FLUX USING MULTILINEAR REGRESSION AND AUTOREGRESSIVE TIME-SERIES METHODS

  • Lee, J.Y.;Moon, Y.J.;Kim, K.S.;Park, Y.D.;Fletcher, A.B.
    • 천문학회지
    • /
    • 제40권4호
    • /
    • pp.99-106
    • /
    • 2007
  • Statistical analyses were performed to investigate the relative success and accuracy of daily maximum X-ray flux (MXF) predictions, using both multilinear regression and autoregressive time-series prediction methods. As input data for this work, we used 14 solar activity parameters recorded over the prior 2 year period (1989-1990) during the solar maximum of cycle 22. We applied the multilinear regression method to the following three groups: all 14 variables (G1), the 2 so-called 'cause' variables (sunspot complexity and sunspot group area) showing the highest correlations with MXF (G2), and the 2 'effect' variables (previous day MXF and the number of flares stronger than C4 class) showing the highest correlations with MXF (G3). For the advanced three days forecast, we applied the autoregressive timeseries method to the MXF data (GT). We compared the statistical results of these groups for 1991 data, using several statistical measures obtained from a $2{\times}2$ contingency table for forecasted versus observed events. As a result, we found that the statistical results of G1 and G3 are nearly the same each other and the 'effect' variables (G3) are more reliable predictors than the 'cause' variables. It is also found that while the statistical results of GT are a little worse than those of G1 for relatively weak flares, they are comparable to each other for strong flares. In general, all statistical measures show good predictions from all groups, provided that the flares are weaker than about M5 class; stronger flares rapidly become difficult to predict well, which is probably due to statistical inaccuracies arising from their rarity. Our statistical results of all flares except for the X-class flares were confirmed by Yates' $X^2$ statistical significance tests, at the 99% confidence level. Based on our model testing, we recommend a practical strategy for solar X-ray flare predictions.

First-Principles Study on the Electronic Structure of Bulk and Single-Layer Boehmite

  • Son, Seungwook;Kim, Dongwook;Na-Phattalung, Sutassana;Ihm, Jisoon
    • Nano
    • /
    • 제13권12호
    • /
    • pp.1850138.1-1850138.6
    • /
    • 2018
  • Two-dimensional (2D) or layered materials have a great potential for applications in energy storage, catalysis, optoelectronics and gas separation. Fabricating novel 2D or quasi-2D layered materials composed of relatively abundant and inexpensive atomic species is an important issue for practical usage in industry. Here, we suggest the layer-structured AlOOH (Boehmite) as a promising candidate for such applications. Boehmite is a well-known layer-structured material and a single-layer can be exfoliated from the bulk boehmite by breaking the interlayer hydrogen bonding. We study atomic and electronic band structures of both bulk and single-layer boehmite, and also obtain the single-layer exfoliation energy using first-principles calculations.

Solar Rotational Tomography Using the Filtered Backprojection Algorithm

  • Cho, Kyuhyoun;Chae, Jongchul
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.43.2-43.2
    • /
    • 2019
  • Tomography is a method to reconstruct three-dimensional structure of an optically thin object. We can obtain the three-dimensional information by combining a number of projected images at different angles. Solar rotational tomography (SRT) is the tomographic method to estimate the coronal structures using the solar rotation. There are a few practical difficulties in solar coronal observation. One of the most crucial difficulty is handling the blocking area by the occulter or the Sun itself. So we have to use the iterative reconstruction for the SRT which can resolve that problem by using the forward modeling. In this study, we propose an alternative method to reconstruct the solar coronal structure: the filtered backprojection (FBP) algorithm. The FBP algorithm is based on the simple analytic solution. Thus it is easy to understand, and the computing cost is much cheaper than that of the iterative reconstruction. Recently we found a solution for the FBP algorithm to the problem of the blocking area in the solar EUV observations. We introduce how to apply the FBP algorithm to the SRT, and show the initial results of the performance test.

  • PDF