DOI QR코드

DOI QR Code

PREDICTION OF DAILY MAXIMUM X-RAY FLUX USING MULTILINEAR REGRESSION AND AUTOREGRESSIVE TIME-SERIES METHODS

  • Lee, J.Y. (Department of Astronomy and Space Science, Kyung Hee University) ;
  • Moon, Y.J. (Department of Astronomy and Space Science, Kyung Hee University) ;
  • Kim, K.S. (Department of Astronomy and Space Science, Kyung Hee University) ;
  • Park, Y.D. (Korea Astronomy and Space Science Institute) ;
  • Fletcher, A.B. (Korea Astronomy and Space Science Institute)
  • Published : 2007.12.31

Abstract

Statistical analyses were performed to investigate the relative success and accuracy of daily maximum X-ray flux (MXF) predictions, using both multilinear regression and autoregressive time-series prediction methods. As input data for this work, we used 14 solar activity parameters recorded over the prior 2 year period (1989-1990) during the solar maximum of cycle 22. We applied the multilinear regression method to the following three groups: all 14 variables (G1), the 2 so-called 'cause' variables (sunspot complexity and sunspot group area) showing the highest correlations with MXF (G2), and the 2 'effect' variables (previous day MXF and the number of flares stronger than C4 class) showing the highest correlations with MXF (G3). For the advanced three days forecast, we applied the autoregressive timeseries method to the MXF data (GT). We compared the statistical results of these groups for 1991 data, using several statistical measures obtained from a $2{\times}2$ contingency table for forecasted versus observed events. As a result, we found that the statistical results of G1 and G3 are nearly the same each other and the 'effect' variables (G3) are more reliable predictors than the 'cause' variables. It is also found that while the statistical results of GT are a little worse than those of G1 for relatively weak flares, they are comparable to each other for strong flares. In general, all statistical measures show good predictions from all groups, provided that the flares are weaker than about M5 class; stronger flares rapidly become difficult to predict well, which is probably due to statistical inaccuracies arising from their rarity. Our statistical results of all flares except for the X-class flares were confirmed by Yates' $X^2$ statistical significance tests, at the 99% confidence level. Based on our model testing, we recommend a practical strategy for solar X-ray flare predictions.

Keywords

References

  1. Barnes G. and Leka K.D. 2006, 'Photospheric magnetic field properties of flaring versus flare-quiet active regions. III. Magnetic charge topology models, ApJ, 646, 1303-1318 https://doi.org/10.1086/504960
  2. Bartkowiak, A. and Jakimiec, M. 1986, 'Short-term flare activity predictions by means of regression functions calculated for various Zurich class groups observed over the period 1977-1979', P. A. Simon, G. Heckman, M. A. Shea (ed.), Proceedings of the Workshop on 'Solar-Terrestrial Predictions II', Meudon, France, 18-22 June 1984, 285-293
  3. Bartkowiak, A. and Jakimiec, M.: 1990a, 'Short-term predictions of flare activity using alpha-trimmed regression method', Acta Astron. 40, 169-181
  4. Bartkowiak, A. and Jakimiec, M.: 1990b, 'Robust regression with Huber's weights in predictions of flare activity', Acta Astron. 40, 379-388
  5. Bornmann, P. L. and Shaw, D.: 1994, 'Flare rates and the McIntosh active-region classifications', Sol. Phys., 150, 127-146 https://doi.org/10.1007/BF00712882
  6. Bornmann, P. L., Kalmbach, D., and Kulhanek, D.: 1994, 'McIntosh active-region class similarities and suggestions for mergers', Sol. Phys., 150, 147-164 https://doi.org/10.1007/BF00712883
  7. Gallagher, P. T., Moon, Y.-J., and Wang, H.: 2002, 'Active region monitoring and flare forecasting', Sol. Phys., 209, 171-183 https://doi.org/10.1023/A:1020950221179
  8. Georgoulis, Manolis K. and David M. Rust, 2007, 'Quantitative forecasting of major solar flare', ApJ, 661, 109-112 https://doi.org/10.1086/518718
  9. Hudson, H. S., Haisch, B. M., and Strong, K. T. 1995, 'Comment on 'The solar flare myth' by J. T. Gosling', J. Geophys. Res. 100(A3), 3473-3477 https://doi.org/10.1029/94JA02710
  10. Jakimiec, M. and Bartkowiak, A. 1986, 'Relationships among characteristics describing solar active regions', P. A. Simon, G. Heckman, M. A. Shea (ed.), Proceedings of the Workshop on 'Solar-Terrestrial Predictions II', Meudon, France, 18-22 June 1984, 294-299
  11. Jakimiec, M. 1993, 'Two-step regression model used for short-term flare activity prediction', in J. Hruska, M. A. Shea, D. F. Smart, and G. R. Heckman (ed.), Proceedings of the Workshop on 'Solar-Terrestrial Predictions IV', Ottawa, Canada, 22-29 May 1992, v. 2, 180
  12. Jakimiec, M. and Bartkowiak, A. 1994, 'Short-term solar flare predictions by distance-based regression I. Bearalert Regions in 1988 and 1989 - continuous predictors', Acta Astron., 44, 115-140
  13. Kahler, S. W., Sheeley, N. R., Jr., Howard, R. A., Michels, D. J., Koomen, M. J., McGuire, R. E., von Rosenvinge, T. T., and Reames, D. V. 1984, 'Associations between coronal mass ejections and solar energetic proton events', J. Geophys. Res., 89, 9683-9693 https://doi.org/10.1029/JA089iA11p09683
  14. Kahler, S. W. 1992, 'Solar flares and coronal mass ejections', ARA&A, 30, 113-141 https://doi.org/10.1146/annurev.aa.30.090192.000553
  15. Langley, R. 1971, Practical Statistics Simply Explained, revised ed., Dover Publ., Inc., New York, p. 285
  16. Lee, J. and Kim, K.-S. 1996, 'The prediction of flare production using solar activity data', Publications of Korean Astronomical Society, 11(1), 263-277
  17. Lee, J., Jang, S.-J., Kim, Y.-H., and Kim, K.-S. 1999, 'The prediction of solar activity for solar maximum', Publications of Korean Astronomical Society, 14(2), 103-112
  18. McIntosh, P. S. 1990, 'The classification of sunspot groups', Sol. Phys., 125, 251-267 https://doi.org/10.1007/BF00158405
  19. Moon, Y.-J., Choe, G. S., Yun, H. S., and Park, Y. D. 2001, 'Flaring time interval distribution and spatial correlation of major X-ray solar flares', J. Geophys. Res., 106(A12), 29951-29962 https://doi.org/10.1029/2000JA000224
  20. Neidig, D. F., Wiborg, P. H., Seagraves, P. H., Hirman, J. W., and Flowers, W. E. 1986, 'Objective forecasts for solar flares using multivariate discriminant analysis', P. A. Simon, G. Heckman, M. A. Shea (ed.), Proceedings of the Workshop on 'Solar-Terrestrial Predictions II', Meudon, France, 18-22 June 1984, 300-305
  21. Schrijver Carolus J. 2007, 'A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting, ApJ, 655, 117-120 https://doi.org/10.1086/511857
  22. Wheatland M.S. 2000, 'The origin of the solar flare waiting-time distribution', ApJ, 536, 109-112 https://doi.org/10.1086/312739
  23. Wheatland M.S. 2004, 'A bayesian approach to solar flare prediction', ApJ, 609, 1134-1139 https://doi.org/10.1086/421261
  24. Wilson, R. M. 1994, 'A comment on the suspected solar neutrino-solar activity connection', Sol. Phys., 149, 391-394 https://doi.org/10.1007/BF00690624

Cited by

  1. Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms vol.835, pp.2, 2017, https://doi.org/10.3847/1538-4357/835/2/156
  2. Development of Daily Maximum Flare-Flux Forecast Models for Strong Solar Flares vol.291, pp.3, 2016, https://doi.org/10.1007/s11207-016-0869-2
  3. Deep Flare Net (DeFN) Model for Solar Flare Prediction vol.858, pp.2, 2018, https://doi.org/10.3847/1538-4357/aab9a7