• Title/Summary/Keyword: Power-saving efficiency

Search Result 354, Processing Time 0.025 seconds

Development of a High-Efficient Magneric Ballast for Fluorescentlamps (고효율의 형광램프용 자기식 안정기의 개발)

  • 남택주;김희식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.2
    • /
    • pp.121-128
    • /
    • 1998
  • A new magnetic ballast was designed and developed to get high luminous efficiency. The core material of new magnetic ballast was G-9 and its shape of core is modified. The diameter of the coil was upgraded to 0.5[mm], and a new power-saving circuit was designed for the semiconductor ignition starter. The experimental results of the ballast showed reduction of the electric loss in the magnetic ballast about 1.7Watt (0.5[%]). The luminous efficiency was increased by 6.2 lm/Watt (7.6[%]) and the ballast efficiency factor(BEF) of 1.09(7.6[%]). The prototype was tested through national standard testing procedure. A high efficient energy-using equipment (the second grade in the efficiency of energy consumption) was certified. The saving power of 1.7[W] was shown by lighting appratus for fluorescent lamps. The result will be used for the high efficient magnetic ballast technology.nology.

  • PDF

Indicators of Economic Evaluation and Case Studies on New & Renewable Energy (신재생에너지 경제성 평가 결과 분석 및 평가지표 연구)

  • Ahn Eun-Young;Kim Seong-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.600-603
    • /
    • 2005
  • U.S. National Research Council proposed benefits framework for energy R&D project as economic benefits, environmental benefits, security benefits and knowledge benefits. Following this framework, U.S. National Renewable Energy Laboratory evaluated the projected benefits of Federal Energy Efficiency and Renewable Energy Programs in the indicators of energy-expenditure savings, energy system cost savings, $CO_2$ emissions reductions. oil savings, natural gas saving and avoided additions to central conventional power. As this result, geothermal energy have predominant position in the energy-expenditure savings, natural gas saving and avoided addi t ions to central conventional power to FY2050. The projected benefits, in monetary value, of the whole supply-potential of geothermal energy in Korea were evaluated as 480.2 billion Won, 43.1 billion Won and 135.8 billion Won for the private energy-cost savings, social environmental-cost savings, and import energy-cost saving, respectively.

  • PDF

Energy-Saving and Environmental Evaluation of Water Supply System on Replacing Water Storage Installed Booster Pump System by Direct Connecting Booster Pump System (저수조 설치 펌프직송방식의 수도직결 증압방식 전환에 관한 에너지절약성 및 환경성 검토)

  • Lee, Chulgoo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.3
    • /
    • pp.7-12
    • /
    • 2015
  • Currently water supply system with water storage is generally applied except for small building such as single-family houses, and water supply system on replacing water storage installed system by direct connecting system has been increasing because of sanitary and energy-saving aspects. The purpose of this study is to evaluate energy-saving and environmental efficiency of direct connecting booster pump system in comparison with the water storage installed system. The architectural condition of the evaluation subject is ten-story apartment house in which sixty households live. To calculate the power consumption of the pump, the volume of water supply was determined from existing data and other data, such as head, efficiency of the pump, was the value used for general application in design office. The power consumption of the water supply pump for one day was 8.5 kWh for direct connecting booster pump system, and 22.5 kWh for water storage installed system, and the former system showed energy savings of 62% compared to the latter system. Reduced power consumption also leads to reduction of $CO_2$ emission. According to the criteria presented in the Korea Energy Management Corporation, reducing the 2,410 kg $CO_2$ emission is possible per year.

An Energy-Efficient Protocol For Detecting Injurious Insect in Wireless Bio Sensor Networks (무선 바이오센서 네트워크에서 에너지 효율을 고려한 해충 감지 시스템을 구축하기 위한 프로토콜)

  • Yoo, Dae Hyun;Lee, Joo Sang;An, Beongku;Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.2
    • /
    • pp.29-34
    • /
    • 2008
  • In this paper, we proposed a system protocol for detecting injurious insect to support energy saving transmission in wireless bio sensor networks. The main ideas and features of the system are as follows. First, the route establishment method which is based on the energy efficiency and stability by using time-division tree structure. Second, multi-hop direction-based data gatering structure. In this structure, the selected fading method is used to transmit packet via the established tree structure for supporting power saving and route lifetime efficiently. Finally, we can get the node power saving and reduce transmission delay, thus network lifetime and efficiency are improved. The performance evaluation of the proposed protocol is via OPNET(Optimized Network Engineering Tool).

  • PDF

Improvement of Submarine Cooling System using HILS Simulation (HILS 기반의 수중체 냉각 시스템 개선)

  • Jung, Sung-Young;Oh, Jin-Seok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.5
    • /
    • pp.376-383
    • /
    • 2012
  • Owing to rapid development of power device and inverters, most of submarines adopt an eletric propulsion system. Although PMPM(Permanent Magnet Propulsion Motor) propulsion system has relatively higher power, energy conversion efficiency and smaller volume than engine propulsion system, it also produces large amount of heat due to current flowing inside motor coils and change of magnetic field induced by iron core. The produced heat in stator and inverter largely affects motor efficiency and bearing lubrication and causes thermal aging while the system is on operation. So, we analyze the existing cooling system and submarine ESS (Energy Saving System) cooling system whose power consumption is reduced. HILS(Hardware In the Loop System) technique is used for the modelling of the submarine cooling system. To confirm the ESS cooling system characteristic, HILS is simulated using LabVIEW with hardware. As a result, the ESS cooling system has the characteristic of better temperature stability and less power consumption than the existing one.

Process-Variation-Adaptive Charge Pump Circuit using NEM (Nano-Electro-Mechanical) Relays for Low Power Consumption and High Power Efficiency

  • Byeon, Sangdon;Shin, Sanghak;Song, Jae-Sang;Truong, Son Ngoc;Mo, Hyun-Sun;Lee, Seongsoo;Min, Kyeong-Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.563-569
    • /
    • 2015
  • For some low-frequency applications such as power-related circuits, NEM relays have been known to show better performance than MOSFETs. For example, in a step-down charge pump circuit, the NEM relays showed much smaller layout area and better energy efficiency than MOSFETs. However, severe process variations of NEM relays hinder them from being widely used in various low-frequency applications. To mitigate the process-variation problems of NEM relays, in this paper, a new NEM-relay charge pump circuit with the self-adjustment is proposed. By self-adjusting a pulse amplitude voltage according to process variations, the power consumption can be saved by 4.6%, compared to the conventional scheme without the self-adjustment. This power saving can also be helpful in improving the power efficiency of the proposed scheme. From the circuit simulation of NEM-relay charge pump circuit, the efficiency of the proposed scheme is improved better by 4.1% than the conventional.

Planning ESS Managemt Pattern Algorithm for Saving Energy Through Predicting the Amount of Photovoltaic Generation

  • Shin, Seung-Uk;Park, Jeong-Min;Moon, Eun-A
    • Journal of Integrative Natural Science
    • /
    • v.12 no.1
    • /
    • pp.20-23
    • /
    • 2019
  • Demand response is usually operated through using the power rates and incentives. Demand management based on power charges is the most rational and efficient demand management method, and such methods include rolling base charges with peak time, sliding scaling charges depending on time, sliding scaling charges depending on seasons, and nighttime power charges. Search for other methods to stimulate resources on demand by actively deriving the demand reaction of loads to increase the energy efficiency of loads. In this paper, ESS algorithm for saving energy based on predicting the amount of solar power generation that can be used for buildings with small loads not under electrical grid.

The Characteristics Analysis of Single Phase LSPM Synchronous Motor by changing Design Parameter (단상 LSPM 동기 전동기의 설계 변수 변화에 따른 특성 해석)

  • Hong, Sook-Hyun;Ko, Kwon-Min;Park, Chan-Bae;Choi, Jae-Young
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.86-88
    • /
    • 2003
  • The efficiency of electric machine is important due to increase of interest about energy saving. Single Phase Line Start Permanent Magnet Synchronous Motor has high efficiency and power factor. LSPMSM offer a high efficiency as compared induction motor which are used in the home appliance. The analysis and design of LSPMSM is difficult because of unbalanced rotating magnetic field, nonlinear characteristics and rotor saliency. To consider these effects, F.E.M(Finite Element Methods) is coupled equivalent circuit methods. In this paper, a methods of analysis and design using F.E.M and equivalent circuit is represented.

  • PDF

Hybrid Sinusoidal-Pulse Charging Method for the Li-Ion Batteries in Electric Vehicle Applications Based on AC Impedance Analysis

  • Hu, Sideng;Liang, Zipeng;He, Xiangning
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.268-276
    • /
    • 2016
  • A hybrid sinusoidal-pulse current (HSPC) charging method for the Li-ion batteries in electric vehicle applications is proposed in this paper. The HSPC charging method is based on the Li-ion battery ac-impedance spectrum analysis, while taking into account the high power requirement and system integration. The proposed HSPC method overcomes the power limitation in the sinusoidal ripple current (SRC) charging method. The charger shares the power devices in the motor inverter for hardware cost saving. Phase shifting in multiple pulse currents is employed to generate a high frequency multilevel charging current. Simulation and experimental results show that the proposed HSPC method improves the charger efficiency related to the hardware and the battery energy transfer efficiency.

Adaptive Power Saving Mechanism of Low Power Wake-up Receivers against Battery Draining Attack (배터리 소모 공격에 대응하는 저전력 웨이크업 리시버의 적응형 파워 세이빙 메커니즘)

  • So-Yeon Kim;Seong-Won Yoon;Il-Gu Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.3
    • /
    • pp.393-401
    • /
    • 2024
  • Recently, the Internet of Things (IoT) has been widely used in industries and daily life that directly affect human safety, life, and assets. However, IoT devices, which need to meet low-cost, lightweight, and low-power requirements, face a significant problem of shortened battery lifetime due to battery draining attacks and interference. To solve this problem, the 802.11ba standard for the Wake-up Receiver (WuR) has emerged, this feature is playing a crucial role in minimizing energy consumption. However, the WuR protocol did not consider security mechanisms in order to reduce latency and overhead. Therefore, in this study, anAdaptive Power Saving Mechanism (APSM) is proposed for low-power WuR to counter battery draining attacks. APSM can minimize abnormally occurring power consumption by exponentially increasing power-saving time in environments prone to attacks. According to experimental results, the proposed APSM improved energy consumption efficiency by a minimum of 13.77% compared to the traditional Legacy Power Saving Mechanism (LPSM) when attack traffic ratio is 10% or more of the total traffic.