• Title/Summary/Keyword: Power-Ground Plane

Search Result 105, Processing Time 0.023 seconds

Analysis of the Differences of the Shock Attenuation Strategy between Double-leg and Single-leg Landing on Sagittal Plane using Statistical Parametric Mapping (Statistical Parametric Mapping을 이용한 시상면에서의 양발 착지와 외발 착지의 전략 차이)

  • Ha, Sunghe;Park, Sang-Kyoon;Lee, Sae Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.4
    • /
    • pp.255-261
    • /
    • 2019
  • Objective: The purpose of this study was to investigate differences of shock attenuation strategies between double-leg and single-leg landing on sagittal plane using statistical parametric mapping. Method: Nine healthy female professional soccer players (age: 24.0±2.5 yrs, height: 164.9±3.3 cm, weight: 55.7±6.6 kg, career: 11.2±1.4 yrs) were participated in this study. The subjects performed 10 times of double-leg and single-leg landing from the box of 30 cm height onto force plates respectively. The ground reaction force, angle, moment, angular velocity, and power of the ankle, knee, and hip joint on sagittal plane was calculated from initial contact to maximum knee flexion during landing phase. Statistical parametric mapping was used to compare the biomechanical variables of double-leg and single-leg landing of the dominant leg throughout the landing phase. Each mean difference of variables was analyzed using a paired t-test and alpha level was set to 0.05. Results: For the biomechanical variables, significantly increased vertical ground reaction force, plantarflexion moment of the ankle joint, negative ankle joint power and extension moment of the hip joint were found in single-leg landing compared to double-leg landing (p<.05). In addition, the flexion angle and angular velocity of the knee and hip joint in double-leg landing were observed significantly greater than single-leg landing, respectively (p<.05). Conclusion: These findings suggested that negative joint power and plantarflexion moment of the ankle joint can contribute to shock absorption during single-leg landing and may be the factors for preventing the musculoskeletal injuries of the lower extremity by an external force.

Fabrication of All-Nb Josephson Junction Array Using the Self-Aligning and Reactive ion Etching Technique (Self-Aligning 기술과 반응성 이온 식각 기술로 제작된 Nb 조셉슨 접합 어레이의 특성)

  • Hong, Hyun-Kwon;Kim, Kyu-Tea;Park, Se-Il;Lee, Kie-Young
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.49-55
    • /
    • 2001
  • Josephson junction arrays were fabricated by DC magnetron sputtering, self-aligning and reactive ion etching technique. The Al native oxide, formed by thermal oxidation, was used as the tunneling barrier of Nb/$Al-A1_2$$O_3$Nb trilayer. The arrays have 2,000 Josephson junctions with the area of $14\mu\textrm{m}$ $\times$ $46\mu\textrm{m}$. The gap voltages were in the range of 2.5 ~2.6 mV and the spread of critical current was $\pm$11~14%. When operated at 70~94 ㎓, the arrays generated zero-crossing steps up to 2.1~2.4 V. To improve transmission of microwave power and prevent diffusion of oxygen into Nb ground-plane while depositing $SiO_2$dielectric, we applied a plasma nitridation process to the Nb ground-plane. The microwave power was well propagated in Josephson junction arrays with nitridation. The difference in microwave transmission 7an be interpreted by the surface impedance change depending on nitridation.

  • PDF

A Design of 5.8 ㎓ Oscillator using the Novel Defected Ground Structure

  • Joung, Myoung-Sub;Park, Jun-Seok;Lim, Jae-Bong;Cho, Hong-Goo
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.2
    • /
    • pp.118-125
    • /
    • 2003
  • This paper presents a 5.8-㎓ oscillator that uses a novel defected ground structure(DGS), which is etched on the metallic ground plane. As the suggested defected ground structure is the structure for mounting an active device, it is the roles of a feedback loop inducing a negative resistance as well as a frequency-selective circuit. Applying the feedback loop between the drain and the gate of a FET device produces precise phase conversion in the feedback loop. The equivalent circuit parameters of the DGS are extracted by using a three-dimensional EM simulation ,md simple circuit analysis method. In order to demonstrate a new DGS oscillator, we designed the oscillator at 5.8-㎓. The experimental results show 4.17 ㏈m output power with over 22 % dc-to-RF power efficiency and - 85.8 ㏈c/Hz phase noise at 100 KHz offset from the fundamental carrier at 5.81 ㎓.

An Unequal Wilkinson Power Divider Using Defected Ground Structure in Double Layered Substrate (이중 기판 결함 접지 구조를 이용한 비대칭 월킨슨 전력 분배기)

  • Lim, Jong-Sik;Koo, Jae-Jin;Oh, Seong-Min;Jeong, Yong-Chae;Ahn, Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.11
    • /
    • pp.1291-1298
    • /
    • 2007
  • A novel 1:4 unequal wilkinson power divider using rectangular-shaped defected ground structure(DGS) in double layered substrate is proposed for removing the ground problem of DGS in packaging. Rectangular-shared DGS produces the transmission line having much higher characteristic impedance than standard microstrip line. The proposed unequal divider is composed of DGS and double layered substrate in order to be free from the ground problem of DGS patterns in packaging in metal housings. The second substrate is attached to the first substrate which contains DGS pattern on its ground plane at the bottom side to form the double layered substrate. In order to show the validity of the proposed DGS in the double layered substrate, a 1:4 unequal power divider is designed and measured. The predicted and measured performances are shown with an excellent agreement between them.

Power Amplifier Design using λ/4 DGS(Defected Ground Structure) Bias Line (λ/4 DGS 바이어스 선로를 이용한 전력증폭기 설계)

  • 정시균;정용채
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.924-931
    • /
    • 2002
  • In this paper, a new λ/4 bias transmission line that is added dumbbell-shaped defected ground structure(DGS) on ground plane of the conventional λ/4 bias transmission line is proposed. This DGS λ/4 bias transmission line maintains high characteristic impedance, but physical width is wider and length is shorter than that of the conventional bias line. If the proposed bias line is attached on signal transmission line, this bias line can reduces the $3^{rd}$ harmonic signal as well as the$2^{nd}$ harmonic signal. With harmonic reduction characteristics, efficiency and linearity of amplifier are improved. The proposed bias line is adopted in power amplifier on IMT-2000 base-station transmitting band. This paper presents several simulations and experimental results of DGS to show validity of the proposed power amplifier using the new λ/4 bias transmission line. Experimental results represent that the $3^{rd}$ harmonic signal is reduced about 26.5 dB and efficiency is improved about 9.1 % and IMD3 is improved 4.5 dB than the conventional structure.

Fluid Flow and Heat Transfer Inside a Solar Chimney Power Plant

  • Gholamalizadeh, Ehsan;Chung, Jae Dong
    • Plant Journal
    • /
    • v.14 no.1
    • /
    • pp.42-46
    • /
    • 2018
  • The flow and heat transfer characteristics inside a solar chimney power plant system are analyzed in this article. 3-D model with the $k-{\varepsilon}$ turbulence closure was developed. In this model, to solve the radiative transfer equation the discrete ordinates radiation model was implemented, using a two-band radiation model. To simulate radiation effects from the sun's rays, the solar ray tracing algorithm was coupled to the calculation via a source term in the energy equation. Simulations were carried out for a system with the geometry parameters of the Manzanares power plant. Based on the numerical results, the velocity and temperature distributions were illustrated and the results were validated by comparing with experimental data of the Manzanares prototype power plant. Moreover, temperature profile of the ground surface of the system was illustrated.

  • PDF

Design of a Rectenna Using Dual Band/Dual Polarization Microstrip Patch Antenna (이중대역/이중편파 패치 안테나를 이용한 렉테나 설계)

  • Seo, Ki-Won;Kim, Jung-Han;Roh, Hyoung-Hwan;Seong, Yeong-Rak;Oh, Ha-Ryoung;Park, Jun-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2268-2272
    • /
    • 2010
  • This letter presents that a rectenna can utilize more stable wireless power by using a new design dual band/dual polarization microstrip patch antenna and 2 stage voltage multiplier at 2.4 GHz band and 3.1 GHz band. The proposed antenna is a new microstrip patch antenna design to make impedance matching possible by using slotted capacitive coupling between the patch and $50\Omega$ feed line on a ground plane. Its advantage is that the size of the rectenna can be reduced by using $50\Omega$ feed line on the ground plane, which can be used efficiently. The dual band/dual polarization microstrip patch antenna shows circular polarization at 2.4 GHz band and linear polarization at 3.1 GHz band. Under -10 dB return loss, The dual band/dual polarization microstrip patch antenna obtains 340 MHz bandwidth as 2.23~2.57 GHz and 375 MHz bandwidth as 2.95~3.325 GHz. Also, 2 Stage Voltage multiplier is possible to operate at 2.4 GHz band and 3.1 GHz band. The designed retenna can usually obtain wireless power at both 3.1 GHz band, and 2.4 GHz band applications such as Wi-Fi, Bluetooth, Wireless LAN, etc. So more stable wireless power can be utilized at the same time.

Integrated Circuit(IC) Package Analysis, Modeling, and Design for Resonance Reduction (공진현상 감소를 위한 집적회로 패키지 설계 및 모델링)

  • 안덕근;어영선;심종인
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.133-136
    • /
    • 2001
  • A new package design method to reduce resonance effect due to an IC package is represented. Frequency-variant circuit model of the power/ground plane was developed to accurately reflect the resonance. The circuit model is benchmarked with a full wave simulation, thereby verifying its accuracy. Then it was shown that the proposed technique can efficiently reduce the resonance due to the IC package.

  • PDF

Antenna factors of short dipole antennas with roberts balun (Roberts밸런을 갖는 단축 다이폴 안테나의 안테나 인자)

  • 김기채
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.3
    • /
    • pp.532-538
    • /
    • 1997
  • Exactly aclculated antenna factors are requeired for determining EMI levels in an actual radiated emission test. In this paper, the antenna factors of short dipole antennas above the ground plane are calculated theoretically for the antenna with Roberts balun specified ANSI C63.5 regulation. Also treated is a half-wavelength dipole antenna with Roberts balun to compare the antenna factors with those of resonant dipole antenna. In formulationof antenna factors the antenna is treated as the boundary value problem of Maxwells equations and is analyzed by the Galerkins method of moments. The balun is treated using circuit theory based on power transmission mismatch.

  • PDF

Wideband Suppression of Radiated Emissions from a Power Bus in High-Speed Printed Circuit Boards

  • Shim, Yujeong;Kim, Myunghoi
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.3
    • /
    • pp.184-190
    • /
    • 2016
  • We present experimental demonstrations of electromagnetic bandgap (EBG) structures for the wideband suppression of radiated emissions from a power bus in high-speed printed circuit boards (PCBs). In most of the PCB designs, a parallel plate waveguide (PPW) structure is employed for a power bus. This structure significantly produces the wideband-radiated emissions resulting from parallel plate modes. To suppress the parallel plate modes in the wideband frequency range, the power buses based on the electromagnetic bandgap structure with a defected ground structure (DGS) are presented. DGSs are applied to a metal plane that is connected to a rectangular EBG patch by using a via structure. The use of the DGS increases the characteristic impedance value of a unit cell, thereby substantially improving the suppression bandwidth of the radiated emissions. It is experimentally demonstrated that the DGS-EBG structure significantly mitigates the radiated emissions over the frequency range of 0.5 GHz to 2 GHz as compared to the PPW.