References
- Arendt, E. A., Agel, J. & Dick, R. (1999). Anterior cruciate ligament injury patterns among collegiate men and women. Journal of Athletic Training, 34(2), 86-92.
- Boden, B. P., Torg, J. S., Knowles, S. B. & Hewett, T. E. (2009). Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. The American Journal of Sports Medicine, 37(2), 252-259. https://doi.org/10.1177/0363546508328107
- Cho, J. H., Koh, Y. C., Lee, D. Y. & Kim, K. H. (2012). The Study of Strategy for Energy Dissipation Dur ing Drop Landing from Different Heights. Korean Journal of Sport Biomechanics, 22(3), 315-324. https://doi.org/10.5103/KJSB.2012.22.3.315
- Dai, B., Herman, D., Liu, H., Garrett, W. E. & Yu, B. (2012). Prevention of ACL injury, part I: injury characteristics, risk factors, and loading mechanism. Research in Sports Medicine, 20(3-4), 180-197. https://doi.org/10.1080/15438627.2012.680990
- Dingenen, B., Malfait, B., Vanrenterghem, J., Robinson, M. A., Verschueren, S. M. & Staes, F. F. (2015). Can two-dimensional measured peak sagittal plane excursions during drop vertical jumps help identify three-dimensional measured joint moments?. The Knee, 22(2), 73-79. https://doi.org/10.1016/j.knee.2014.12.006
- Engebretsen, L., Steffen, K., Alonso, J. M., Aubry, M., Dvorak, J., Junge, A., . . . Wilkinson, M. (2010). Sports injuries and illnesses during the Winter Olympic Games 2010. British Jouranl of Sports Medicine, 44(11), 772-780. https://doi.org/10.1136/bjsm.2010.076992
- Ford, K. R., Myer, G. D. & Hewett, T. E. (2007). Reliability of landing 3D motion analysis: implications for longitudinal analyses. Medicine & Science in Sports & Exercise, 39(11), 2021-2028. https://doi.org/10.1249/mss.0b013e318149332d
- Frobell, R. B., Roos, H. P., Roos, E. M., Hellio Le Graverand, M. P., Buck, R., Tamez-Pena, J., . . . Lohmander, L. S. (2008). The acutely ACL injured knee assessed by MRI: are large volume traumatic bone marrow lesions a sign of severe compression injury? Osteoarthritis Cartilage, 16(7), 829-836. https://doi.org/10.1016/j.joca.2007.11.003
- Grassi, A., Smiley, S. P., Roberti di Sarsina, T., Signorelli, C., Marcheggiani Muccioli, G. M., Bondi, A., . . . Zaffagnini, S. (2017). Mechanisms and situations of anterior cruciate ligament injuries in professional male soccer players: a YouTube-based video analysis. European Journal of Orthopaedic Surgery & Traumatology, 27(7), 967-981. https://doi.org/10.1007/s00590-017-1905-0
- Ha, S. & Park, S.-K. (2018). The effect of box height during drop landing on risk factors of anterior cruciate ligament injury in female players. The Asian Journal of Kinesiology, 20(3), 24-31. https://doi.org/10.15758/ajk.2018.20.3.24
- Haff, G. G. & Triplett, N. T. (Eds.). (2015). Essentials of strength training and conditioning 4th edition. Human kinetics. 440.
- Heebner, N. R., Rafferty, D. M., Wohleber, M. F., Simonson, A. J., Lovalekar, M., Reinert, A., & Sell, T. C. (2017). Landing kinematics and kinetics at the knee during different landing tasks. Journal of Athletic Training, 52(12), 1101-1108. https://doi.org/10.4085/1062-6050-52.11.25
- Hewett, T. E., Myer, G. D., Ford, K. R., Heidt, R. S., Jr., Colosimo, A. J., McLean, S. G., . . . Succop, P. (2005). Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. The American Journal of Sports Medicine, 33(4), 492-501. https://doi.org/10.1177/0363546504269591
- Ireland, M. L. (1999). Anterior cruciate ligament injury in female athletes: epidemiology. Journal of Athletic Training, 34(2), 150-154.
- Koo, D., Maeng, H. & Yang, J. (2019). Vertical stiffness and lower limb kinematic characteristics of children with down syndrome during drop landing. Korean Journal of Sport Biomechanics, 29(3), 137-143. https://doi.org/10.5103/KJSB.2019.29.3.137
- Lategan, L., Crafford, K., Suliman, F. & Govender, N. (2014). Electrical muscle stimulation (EMS) training of the hamstrings. African Journal for Physical Health Education, Recreation and Dance, 20(Issue-21), 439-452.
- Lee, J., Song, Y. & Shin, C. S. (2018). Effect of the sagittal ankle angle at initial contact on energy dissipation in the lower extremity joints during a single-leg landing. Gait & Posture, 62, 99-104. https://doi.org/10.1016/j.gaitpost.2018.03.019
- Leppanen, M., Pasanen, K., Kujala, U. M., Vasankari, T., Kannus, P., Ayramo, S., . . . Parkkari, J. (2017). Stiff landings are associated with increased ACL injury risk in young female basketball and floorball players. The American Journal of Sports Medicine, 45(2), 386-393. https://doi.org/10.1177/0363546516665810
- Mason-Mackay, A. R., Whatman, C. & Reid, D. (2016). The effect of ankle bracing on lower extremity biomechanics during landing: A systematic review. Journal of Science and Medicine in Sport, 19(7), 531-540. https://doi.org/10.1016/j.jsams.2015.07.014
- Meyer, E. G. & Haut, R. C. (2005). Excessive compression of the human tibio-femoral joint causes ACL rupture. Journal of Biomechics, 38(11), 2311-2316. https://doi.org/10.1016/j.jbiomech.2004.10.003
- Mokhtarzadeh, H., Yeow, C. H., Hong Goh, J. C., Oetomo, D., Malekipour, F. & Lee, P. V. (2013). Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing. Journal of Biomechanics, 46(11), 1913-1920. https://doi.org/10.1016/j.jbiomech.2013.04.010
- Morgan, K. D., Donnelly, C. J. & Reinbolt, J. A. (2014). Elevated gastrocnemius forces compensate for decreased hamstrings forces during the weight-acceptance phase of single-leg jump landing: implications for anterior cruciate ligament injury risk. Journal of Biomechics, 47(13), 3295-3302. https://doi.org/10.1016/j.jbiomech.2014.08.016
- Myer, G. D., Ford, K. R., Brent, J. L. & Hewett, T. E. (2006). The effects of plyometric vs. dynamic stabilization and balance training on power, balance, and landing force in female athletes. Journal of Strength and Conditioning Research, 20(2), 345-353. https://doi.org/10.1519/R-17955.1
- Myer, G. D., Ford, K. R., Khoury, J., Succop, P. & Hewett, T. E. (2011). Biomechanics laboratory-based prediction algorithm to identify female athletes with high knee loads that increase risk of ACL injury. British Journal of Sports Medicine, 45(4), 245-252. https://doi.org/10.1136/bjsm.2009.069351
- Olsen, O. E., Myklebust, G., Engebretsen, L. & Bahr, R. (2004). Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. The American Journal of Sports Medicine, 32(4), 1002-1012. https://doi.org/10.1177/0363546503261724
- Padua, D. A., DiStefano, L. J., Beutler, A. I., de la Motte, S. J., DiStefano, M. J. & Marshall, S. W. (2015). The landing error scoring system as a screening tool for an anterior cruciate ligament injury-prevention program in elite-youth soccer athletes. Journal of Athletic Training, 50(6), 589-595. https://doi.org/10.4085/1062-6050-50.1.10
- Pataky, T. C., Robinson, M. A. & Vanrenterghem, J. (2016). Region-of-interest analyses of one-dimensional biomechanical trajectories: bridging 0D and 1D theory, augmenting statistical power. PeerJ, 4, e2652. https://doi.org/10.7717/peerj.2652
- Pfile, K. R., Hart, J. M., Herman, D. C., Hertel, J., Kerrigan, D. C. & Ingersoll, C. D. (2013). Different exercise training interventions and drop-landing biomechanics in high school female athletes. Journal of Athletic Training, 48(4), 450-462. https://doi.org/10.4085/1062-6050-48.4.06
- Rowley, K. M. & Richards, J. G. (2015). Increasing plantarflexion angle during landing reduces vertical ground reaction forces, loading rates and the hip's contribution to support moment within participants. Journal of Sports Sciences, 33(18), 1922-1931. https://doi.org/10.1080/02640414.2015.1018928
- Ryu, J. S. (2014). Variability of GRF components between increased running times during prolonged run. Korean Journal of Sport Biomechanics, 24(4), 359-365. https://doi.org/10.5103/KJSB.2014.24.4.359
- Sell, T. C., Ferris, C. M., Abt, J. P., Tsai, Y., Myers, J. B., Fu, F. H. & Lephart, S. M. (2007). Predictors of proximal tibia anterior shear force during a vertical stop-jump. Journal of Orthopedic Research, 25(12), 1589-1597. https://doi.org/10.1002/jor.20459
- Shimokochi, Y., Ambegaonkar, J. P., Meyer, E. G., Lee, S. Y. & Shultz, S. J. (2013). Changing sagittal plane body position during single-leg landings influences the risk of non-contact anterior cruciate ligament injury. Knee Surgery, Sports Traumatology, Arthroscopy, 21(4), 888-897. https://doi.org/10.1007/s00167-012-2011-9
- Soligard, T., Steffen, K., Palmer, D., Alonso, J. M., Bahr, R., Lopes, A. D., . . . Engebretsen, L. (2017). Sports injury and illness incidence in the Rio de Janeiro 2016 Olympic Summer Games: A prospective study of 11274 athletes from 207 countries. British Journal of Sports Medicine, 51(17), 1265-1271. https://doi.org/10.1136/bjsports-2017-097956
- Steffen, K., Moseid, C. H., Engebretsen, L., Soberg, P. K., Amundsen, O., Holm, K., . . . Soligard, T. (2017). Sports injuries and illnesses in the Lillehammer 2016 Youth Olympic Winter Games. British Journal of Sports Medicine, 51(1), 29-35. https://doi.org/10.1136/bjsports-2016-096977
- Yeow, C. H., Lee, P. V. & Goh, J. C. (2011). An investigation of lower extremity energy dissipation strategies during singleleg and double-leg landing based on sagittal and frontal plane biomechanics. Human Movement Science, 30(3), 624-635. https://doi.org/10.1016/j.humov.2010.11.010
- Yu, B. & Garrett, W. E. (2007). Mechanisms of non-contact ACL injuries. British Journal of Sports Medicine, 41 Suppl 1, i47-51 https://doi.org/10.1136/bjsm.2007.037192
- Yu, B., Lin, C. F. & Garrett, W. E. (2006). Lower extremity biomechanics during the landing of a stop-jump task. Clinical Biomechanics, 21(3), 297-305. https://doi.org/10.1016/j.clinbiomech.2005.11.003