• Title/Summary/Keyword: Power-Efficient Routing Protocol

Search Result 94, Processing Time 0.025 seconds

Design of efficient location system for multiple mobile nodes in the wireless sensor network

  • Kim, Ki-Hyeon;Ha, Bong-Soo;Lee, Yong-Doo;Hong, Won-Kee
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.81-84
    • /
    • 2005
  • Various design schemes for network using wireless sensor nodes have been widely studied on the several application areas ranging from the real world information collection to environmental monitor. Currently, the schemes are focused on the design of sensor network for low power consumption, power-aware routing protocol, micro miniature operating system and sensor network middleware. The indoor localization system that identifies the location of the distributed nodes in a wireless sensor network requires features dealing with mobility, plurality and other environmental constraints of a sensor node. In this paper, we present an efficient location system to cope with mobility of multiple mobile nodes by designing a location handler that processes location information selectively depending on the nodes' density in a specific region. In order to resolve plurality of multiple mobile nodes, a routing method for the location system is also proposed to avoid the occurrence of overlapped location data.

  • PDF

Virtual Euc1idean Point based Multicast routing scheme in Underwater Acoustic sensor networks (수중 센서 네트워크에서 가상의 유클리디언 포인트를 이용한 멀티캐스트 전송기법)

  • Kim, Tae-Sung;Park, Kyung-Min;Kim, Young-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7B
    • /
    • pp.886-891
    • /
    • 2011
  • Multicast has been a key routing service for efficient data dissemination in underwater acoustic sensor networks. In sensor networks, there are several multicast routing protocol which reflects sensor network nature. However, existing routing scheme was not targeted at underwater acoustic sensor networks which is hard to provide battery continually. Therefore, a specialized routing algorithm is essential for acoustic sensor networks. In this paper, we propose angle aided multicast routing algorithm for decreasing routing computation complexity, including virtual Euclidean Steiner point. Simulation results show better performance than exist routing Position Based Multicast, Geographic Multicast Routing. such as low computation capability and limited power consumption.

Geographical Routing Scheme Considering Channel Condition in WSN (센서 네트워크에서 무선채널환경을 고려한 위치기반라우팅기법)

  • Sim, In-Bo;Lee, Jai-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7B
    • /
    • pp.694-702
    • /
    • 2009
  • Geographical routing protocol, where nodes only need local information exchange to make routing decisions, is a very efficient routing scheme for wireless sensor networks in scalability. However, pure geographical routing does not take account of wireless link condition. If wireless link condition is not considered, when the routing table is updated, the nodes with bad link conditions are updated in the routing table and can be chosen as the next hop. This brings out the retransmissions because of received packet's errors. Also, because of these retransmissions, additional power is consumed. In this paper, we propose geographical routing scheme considering wireless link condition, where reliable data transmission is made and the consumed energy is minimized.

On Optimizing Route Discovery of Topology-based On-demand Routing Protocols for Ad Hoc Networks

  • Seet, Boon-Chong;Lee, Bu-Sung;Lau, Chiew-Tong
    • Journal of Communications and Networks
    • /
    • v.5 no.3
    • /
    • pp.266-274
    • /
    • 2003
  • One of the major issues in current on-demand routing protocols for ad hoc networks is the high resource consumed by route discovery traffic. In these protocols, flooding is typically used by the source to broadcast a route request (RREQ) packet in search of a route to the destination. Such network-wide flooding potentially disturbs many nodes unnecessarily by querying more nodes than is actually necessary, leading to rapid exhaustion of valuable network resources such as wireless bandwidth and battery power. In this paper, a simple optimization technique for efficient route discovery is proposed. The technique proposed herein is location-based and can be used in conjunction with the existing Location-Aided Routing (LAR) scheme to further reduce the route discovery overhead. A unique feature of our technique not found in LAR and most other protocols is the selective use of unicast instead of broadcast for route request/query transmission made possible by a novel reuse of routing and location information. We refer to this new optimization as the UNIQUE (UNIcast QUEry) technique. This paper studies the efficacy of UNIQUE by applying it to the route discovery of the Dynamic Source Routing (DSR) protocol. In addition, a comparative study is made with a DSR protocol optimized with only LAR. The results show that UNIQUE could further reduce the overall routing overhead by as much as 58% under highly mobile conditions. With less congestion caused by routing traffic, the data packet delivery performance also improves in terms of end-to-end delay and the number of data packets successfully delivered to their destinations.

Power Efficient Multi-hop Routing Protocol in Cluster for Wireless Sensor Networks (무선 센서네트워크 환경에서의 효율적인 전력소비를 위한 라우팅 프로토콜)

  • Bae, Dae-Jin;Kim, Jong-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.142-147
    • /
    • 2008
  • In wireless sensor networks, one of the most important issue is improvement of network lifetime with an efficient energy consumption. we repose effective multi-hop routing algorithm which increases the number of nodes alive at any time. In our algorithm we use the dynamic selection of cluster head and short distance transmission method. We simulated the proposed algorithm by using Network Simulator 2 and compared its performance with LEACH. The experimental result shows that the number of the nodes alive is increased up to 39.71[%] during the simulation time.

Optimizing Network Lifetime of RPL Based IOT Networks Using Neural Network Based Cuckoo Search Algorithm

  • Prakash, P. Jaya;Lalitha, B.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.255-261
    • /
    • 2022
  • Routing Protocol for Low-Power and Lossy Networks (RPLs) in Internet of Things (IoT) is currently one of the most popular wireless technologies for sensor communication. RPLs are typically designed for specialized applications, such as monitoring or tracking, in either indoor or outdoor conditions, where battery capacity is a major concern. Several routing techniques have been proposed in recent years to address this issue. Nevertheless, the expansion of the network lifetime in consideration of the sensors' capacities remains an outstanding question. In this research, aANN-CUCKOO based optimization technique is applied to obtain a more efficient and dependable energy efficient solution in IOT-RPL. The proposed method uses time constraints to minimise the distance between source and sink with the objective of a low-cost path. By considering the mobility of the nodes, the technique outperformed with an efficiency of 98% compared with other methods. MATLAB software is used to simulate the proposed model.

An Energy Efficient Routing Scheme for Cluster-based WSNs (클러스터 기반 WSN에서 에너지 효율적인 라우팅 기법)

  • Song, Chang-Young;Kim, Seong-Ihl;Won, Young-Jin;Chung, Yong-Jin
    • 전자공학회논문지 IE
    • /
    • v.47 no.3
    • /
    • pp.41-46
    • /
    • 2010
  • WSN, or Wireless Sensor Network, consists of a multitude of inexpensive micro-sensors. Because the batteries in sensor nodes can not be replaced once they are deployed, the life of a WSN is absolutely determined by the batteries. So, energy efficiency of a network is a critical factor for long-life operation. LEACH protocol which divides WSN into two groups is a typical routing protocol based on the clustering scheme for the efficient use of limited energy. It is composed of round units which are separated into set-up and steady state. In this paper we propose a power saving scheme to minimize set-up phase itself and to involve a data comparison algorithm. We evaluate the performance of the proposed scheme in comparison with original LEACH protocol. Simulation results validate our scheme has better performance in terms of the number of alive nodes as time evolves and average energy dissipated.

Energy Efficient Routing Protocols based on LEACH in WSN Environment (WSN 환경에서 LEACH 기반 에너지 효율적인 라우팅 프로토콜)

  • Dae-Kyun Cho;Tae-Wook Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.609-616
    • /
    • 2023
  • In a wireless network environment, since sensors are not always connected to power, the life of a battery, which is an energy source supplied to sensors, is limited. Therefore, various studies have been conducted to extend the network life, and a layer-based routing protocol, LEACH(: Low-energy Adaptive Clustering Hierarchy), has emerged for efficient energy use. However, the LEACH protocol, which transmits fused data directly to the sink node, has a limitation in that it consumes as much energy as the square of the transmission distance when transmitting data. To improve these limitations, this paper proposes an algorithm that can minimize the transmission distance with multi-hop transmission where cluster heads are chained between cluster heads through relative distance calculation from sink nodes in every round.

Correlation Distance Based Greedy Perimeter Stateless Routing Algorithm for Wireless Sensor Networks

  • Mayasala, Parthasaradhi;Krishna, S Murali
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.139-148
    • /
    • 2022
  • Research into wireless sensor networks (WSNs) is a trendy issue with a wide range of applications. With hundreds to thousands of nodes, most wireless sensor networks interact with each other through radio waves. Limited computational power, storage, battery, and transmission bandwidth are some of the obstacles in designing WSNs. Clustering and routing procedures have been proposed to address these concerns. The wireless sensor network's most complex and vital duty is routing. With the Greedy Perimeter Stateless Routing method (GPSR), an efficient and responsive routing protocol is built. In packet forwarding, the nodes' locations are taken into account while making choices. In order to send a message, the GPSR always takes the shortest route between the source and destination nodes. Weighted directed graphs may be constructed utilising four distinct distance metrics, such as Euclidean, city block, cosine, and correlation distances, in this study. NS-2 has been used for a thorough simulation. Additionally, the GPSR's performance with various distance metrics is evaluated and verified. When compared to alternative distance measures, the proposed GPSR with correlation distance performs better in terms of packet delivery ratio, throughput, routing overhead and average stability time of the cluster head.

Low Power MAC Protocol Design of an Efficient Preamble Exploiting Virtual Synchronization Scheme for Wireless Sensor Networks (무선 센서 네트워크를 위한 효율적인 프리앰블 가상 동기화 기법을 사용하는 저전력 MAC 프로토콜 설계)

  • Lee, Sung-Hun;Hwang, Se-Wook;Lee, Hyuk-Joon;Lee, Hyung-Geun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5B
    • /
    • pp.762-770
    • /
    • 2010
  • The researches about energy efficieny of wireless sensor MAC protocol is an issue in present days. Therefore, MAC and routing protocols for reducing energy consumption at sensor nodes is needed. In this study, a low-power MAC protocol for sensor network is proposed, which in based on X-MAC by exploiting virtual synchronization. The virtual synchronization technique lets senders postpone packet transmission until receivers' wake-up time, so that senders transmit only one or two short preambles. Using NS-2, a proposed MAC protocol improve the energy efficiency by 10% compared with the X-MAC protocol.