• Title/Summary/Keyword: Power tower

Search Result 401, Processing Time 0.029 seconds

Design and Structure Analysis of a Tower Service Lift for Offshore Wind Power System (해상풍력발전시스템 타워서비스리프트 설계 및 구조해석)

  • Choi, Young-Do;Son, Sung-Woo;Jang, Ho-Choul;Choi, Nak-Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.101-108
    • /
    • 2012
  • The purpose of this study is to establish a design method of tower service lift for offshore wind power system, as well as to conduct structure analysis of the service lift system. The service lift system will be built in the internal area of tower of the offshore wind power system. Design and structure analysis for the tower service lift system are conducted to clarify the stability and reliability of the system. Main objective of the design is to secure sufficient capability of transportation of workers and equipment with satisfactory performance within the designed tolerance limit. Total deformation and equivalent stress of the lift system by external load are examined using the results of structure analysis.

Analysis of Grounding resistance reduction effect of Transmission tower (가공송전선로의 철탑 접지저항 저감효과 분석)

  • Min, Byeong-Wook;Kim, Tai-Young;Park, Bong-Gyu;Choi, Jin-Sung;Kang, Yeon-Woog;Park, Kwang-Uk;Bae, Hyun-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.453-454
    • /
    • 2011
  • With the transmission line the ratio of lightning breakdown the while whole breaking down is occupying a high share with average 72%, is a tendency which increases continuously. In order decreasing the back flashover faults from like this lightning breakdown, it is very important to maintain grounding resistance of tower below target. In this paper, we synthetically analyzed the grounding resistance reduction effect of tower foundation and standard ground connection from construction site, and investigated efficiency for ways to increase the length of counter poise and expand the size of conductivity concrete materials.

  • PDF

Analysis of Energy Concentration Characteristics of Heliostat used in 200kW Tower Type Solar Thermal Power Plant (200kW 탑형 태양열발전시스템에서 사용되는 Heliostat의 집열특성 분석)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.80-88
    • /
    • 2011
  • Heliostat in the tower type solar thermal power plant is a sun tracking mirror system to reflect the solar energy to the receiver and the optical performance of it affects to the efficiency of whole power plant most significantly. Thus a solid understanding of heliostat's energy concentration characteristics is the most important step in designing of the heliostat field and the whole power plant. The work presented here is the analysis of energy concentration characteristics of heliostat used in 200kW solar thermal power plant, where the receiver located at 43m high in tower has $2{\times}2$m rectangular shape. The heliostat reflective surface is formed by 4 of $1{\times}1$m flat plate mirror facet and the mirror facet is mounted on the spherical frame. The direct normal incident radiation models in vernal equinox, summer solstice, autumnal equinox and winter solstice are first derived from the actually measured data. Then the intercept ratio, heat flux distribution and total energy collected at the receiver for the heliostats located in the various places of the heliostat field are investigated. Finally the effect of mirror facet installation error on the optical performance of the heliostat is analyzed.

Design of Structure of Heliostat Reflective Surface for 200kW Tower Type Solar Thermal Power Plant (200kW 탑형 태양열발전시스템을 위한 Heliostat 반사면 구조 설계)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.53-62
    • /
    • 2011
  • Heliostat in the tower type solar thermal power plant is a sun tracking mirror system to reflect the solar energy to the receiver and the optical performance of it affects to the efficiency of whole power plant most significantly. Thus a proper design of structure of the heliostat reflective surface could be the most important step in the construction of such power plant. The work presented here is a design of structure of optical surface of heliostat, which will be used in 200kW solar thermal power plant. The receiver located at 43(m) high from ground in tower has $2{\times}2$(m) rectangular shape. We first developed the software tool to simulate the energy concentration characteristics of heliostat using the ray tracing technique. Then, the shape of heliostat reflective surface is designed with the consideration of heliostat's energy concentration characteristics, production cost and productivity. The designed heliostat's reflective surface has a structure formed by canting four of $1{\times}1$(m) rectangular flat plate mirror facet and the center of each mirror facet is located on the spherical surface, where the spherical surface is formulated by the mirror facet mounting frame.

Performance Characteristics of Small Sized Cross-flow Cooling Tower (소형 직교류형 냉각탑의 성능 특성에 관한 연구)

  • Sarker, M.M.A.;Kim, E.P.;Kim, J.D.;Jun, C.H.;Moon, C.G.;Yoon, J.I.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.93-98
    • /
    • 2005
  • The performance of cooling tower is dependent on the thermal performance of the packings. It's assessed by heat transfer rate and fan power. In this study, new packing was developed for application in compact type cross-flow cooling tower. The packing characteristic curve and the pressure drop curve were obtained by measuring packing characteristic values and pressure drops of small sized filler in comparison to existing mid-large sized filler. The heat transfer characteristics on small sized filler are about 66% higher than existing mid-large sized filler. The pressure drop characteristics on small sized filler are about two times of the pressure drop characteristics on existing mid-large sized filler.

  • PDF

Wind Turbine Simulator Implementation Considering Tower Effect of Rotor Blade (풍력발전기 회전자 블레이드의 타워효과를 고려한 풍차 시뮬레이터의 구현)

  • Oh, Jeong-Hun;Jeong, Byoung-Chang;Song, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.247-250
    • /
    • 2003
  • To get more realistic wind turbine torque characteristic, it is important to consider many parameters about wind turbine system. One of them is the tower effect which is occurred when a blade is bypassing the wind turbine tower and influences shaft torque fluctuation. In this paper, to emulate the similar torque performance of wind turbine, the wind turbine simulation and experiment with torque fluctuation by blade tower effect are implemented and verified. The simulation model is based on MATLAB Simulink.

  • PDF

Analysis of EMF Mitigation Characteristic for Transmission Tower Using Compact Insulation Arm (Compact 절연암 송전 철탑의 전자계 저감특성 분석)

  • Song, Hong-Jun;Lee, Won-Kyo;Lee, Sang-Yun;Choi, In-Hyeok;Lee, Dong-Il;Byeon, Ki-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.349-355
    • /
    • 2009
  • As electrical power demand is gradually increasing, the construction of power transmission facility is unavoidable. However difficulties which resulted from increasing of complaints and NYMBY make power transmission tower to be more environmentally friendly. As an alternative proposal, a new method which is changing conventional iron arm for insulation arm which is made of FRP(Fiber Glass Reinforced Plastics) is in progress. In this paper, we discussed environmentally friendly characteristic of domestic 154 kV testing transmission tower whose insulation arms have same mechanical and excellent electrical properties compare to conventional heavy iron arm.

Cooling Tower Overhaul of Secondary Cooling System in HANARO (하나로 2 차 냉각탑의 공장분해수리)

  • Park, Young-Chul;Lee, Young-Sub;Kim, Yang-Gon;Jung, Hoan-Sung;Lim, In-Chul
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2714-2719
    • /
    • 2007
  • HANARO, an open-tank-in-pool type research reactor of 30 MWth power in Korea, has been operating normally since its initial criticality in February, 1995. For the last about ten years, A cooling tower of a secondary cooling system has been operated normally in HANARO. Last year, the cooling tower has been overhauled for preservative maintenance including fills, eliminators, wood support, water distribution system, motors, driving shafts, gear reducers, basements, blades and etc. This paper describes the results of the overhaul. As results, it is confirmed that the cooling tower maintains a good operability through a filed test. And a cooling capability will be tested when a wet bulb temperature is maintained about 28 $^{\circ}C$ in summer and the reactor is operated with the full power.

  • PDF

A review of wind-turbine structural stability, failure and alleviation

  • Rehman, Shafiqur;Alam, Md. Mahbub;Alhems, Luai M.
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.511-524
    • /
    • 2020
  • Advancements in materialistic life styles and increasing awareness about adverse climatic changes and its negative effects on human life have been the driving force of finding new and clean sources of energy. Wind power has become technologically mature and commercially acceptable on global scale. However, fossil fuels have been the major sources of energy in most countries, renewable energy (particularly wind) is now booming worldwide. To cope with this wind energy technology, various related aspects have to be understood by the scientific, engineering, utility, and contracting communities. This study is an effort towards the understanding of the (i) wind turbine blade and tower structural stability issues, (ii) turbine blade and tower failures and remedial measures, (iii) weather and seismic effects on turbine blade and tower failures, (iv) gear box failures, and (v) turbine blade and tower failure analysis tools.

Wind-induced vibration control of a 200 m-high tower-supported steel stack

  • Susuki, Tatsuya;Hanada, Naoya;Homma, Shin;Maeda, Junji
    • Wind and Structures
    • /
    • v.9 no.5
    • /
    • pp.345-356
    • /
    • 2006
  • It is well known that cylinder steel stacks are heavily impacted by vortex-induced vibration. However, the wind-induced vibration behaviors of tower-supported steel stacks are not clarified due to a lack of observation. We studied a stack's response to strong winds over a long period of time by observing the extreme wind-induced vibration of a 200 m-high tower-supported steel stack. This experiment aimed to identify the wind-induced vibration properties of a tower-supported steel stack and assess the validity of the vibration control method used in the experiment. Results revealed a trend in wind-induced vibration behavior. In turn, an effective measure for controlling such vibration was defined by means of increasing the structural damping ratio due to the effects of the tuned mass damper to dramatically decrease the vortex-induced vibration of the stack.