• 제목/요약/키워드: Power system dynamic stability

검색결과 353건 처리시간 0.028초

다기 전력 시스템의 안정화를 위한 탐색화된 정책 반복법 기반 적응형 강인 제어기 설계 (Design of an Adaptive Robust Controller Based on Explorized Policy Iteration for the Stabilization of Multimachine Power Systems)

  • 전태윤;박진배
    • 제어로봇시스템학회논문지
    • /
    • 제20권11호
    • /
    • pp.1118-1124
    • /
    • 2014
  • This paper proposes a novel controller design scheme for multimachine power systems based on the explorized policy iteration. Power systems have several uncertainties on system dynamics due to the various effects of interconnections between generators. To solve this problem, the proposed method solves the LQR (Linear Quadratic Regulation) problem of isolated subsystems without the knowledge of a system matrix and the interconnection parameters of multimachine power systems. By selecting the proper performance indices, it guarantees the stability and convergence of the LQ optimal control. To implement the proposed scheme, the least squares based online method is also investigated in terms of PE (Persistency of Excitation), interconnection parameters and exploration signals. Finally, the performance and effectiveness of the proposed algorithm are demonstrated by numerical simulations of three-machine power systems with governor controllers.

EMI Noise Reduction with New Active Zero State PWM for Integrated Dynamic Brake Systems

  • Baik, Jae-Hyuk;Yun, Sang-Won;Kim, Dong-Sik;Kwon, Chun-Ki;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.923-930
    • /
    • 2018
  • Based on the application of an integrated dynamic brake (IDB) system that uses a PWM inverter fed-AC motor drive to operate the piston, a new active zero state PWM (AZSPWM) is proposed to improve the stability and reliability of the IDB system by suppressing the conducted electro-magnetic interference (EMI) noise under a wide range of load torque. The new AZSPWM reduces common-mode voltage (CMV) by one-third when compared to that of the conventional space vector PWM (CSVPWM). Although this method slightly increases the output current ripple by reducing the CMV, like the CSVPWM, it can be used within the full range of the load torque. Further, unlike other reduced common-mode voltage (RCMV) PWMs, it does not increase the switching power loss. A theoretical analysis is presented and experiments are performed to demonstrate the effectiveness of this method.

운전모드에 따른 회전축계의 동적거동 (Dynamic Behavior of Rotating Shaft System Corresponding to Operating Modes)

  • 김상환
    • 대한기계학회논문집A
    • /
    • 제20권9호
    • /
    • pp.2744-2751
    • /
    • 1996
  • In case of limited power supply, a rotating shaft system may not reach its operating speed that is greater than its critical speed, but the speed oscillates with small ampllitude near critical speed. As a result, it is considered that the operating mode plays an important role in the smooth start of machines. In order to investigate the dynamic behaviors of the rotating shaft system at the beginning stage, one has derived the equations of motion whose degrees of freedom is three, two translations and one rotation. The simultaneous differential equations are numerically solved by using runge-Kutta method, and thus the small time step length could be required corresponding to the stability of solution. Three types of operating modes dependent upon the driving torque rate have been numerically investigated according to the maximum displacement of shaft center. The first type of relation is linear, the second type is composed of two linear curves recommended by machine manufacturer, and the last one is the proposed torque curve reflecting the frequency response curve of one degree of freedom system. For the second type of modes, it is found that the optimal range of intermediate speed to the critical speed lies between 0.8 and 0.9. In addition to that, the maximum displacement can be reduced more if the third type of mode is utilized.

무효전력 보상여유를 고려한 SVC와 ULTC의 협조제어 (Coordinated Control of SVC and ULTC Considering Reactive Power Compensation Margin)

  • 문경섭;손광명;이태기;이송근;박종근
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권4호
    • /
    • pp.351-357
    • /
    • 1999
  • This paper proposes the coordinated control of SVC and UTLC at the distribution substation to get larger operating margin of SVC for the voltage stability control by reactive power compensation. In the conventional method, ULTC doesn't respond to the variation of source voltage, so SVC has the entire responsibility for it. It could cause the lack of operating margin of SVC in some condition. It, however, is important to secure an operating margin for the dynamic stability control in emergancy. This paper proposes the coordinated control method that SVC controls the supply voltage and ULTC respond to the SVC compensation valve based on the relation between SVC compensation and ULTC tap position. The numerical simulation verifies that the proposed system could increase the operating margin of SVC compared with the conventional system.

  • PDF

Development of an Impedance Locus Model for a Protective Relay Dynamic Test with a Digital Simulator

  • Kim, Soo-Nam;Lee, Myoung-Soo;Lee, Jae-Gyu;Rhee, Sang-Bong;Kim, Kyu-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.167-173
    • /
    • 2011
  • This paper presents a method for the development of the impedance locus to test the dynamic characteristics of protective relays. Specifically, using the proposed method, the impedance locus can comprise three impedance points, and the speed of impedance trajectory can be adjusted by frequency deviation. This paper is divided into two main sections. The first section deals with the configuration of impedance locus with voltage magnitude, total impedance magnitude, and impedance angle. The second section discusses the control of the locus speed with the means of the deviation between two frequencies. The proposed method is applied to two machine equivalent systems with offline simulation (i.e., PSCAD) and real-time simulation (i.e., real-time simulation environment) to demonstrate its effectiveness.

Transient Characteristics and Physical Constraints of Grid-Tied Virtual Synchronous Machines

  • Yuan, Chang;Liu, Chang;Yang, Dan;Zhou, Ruibing;Tang, Niang
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1111-1126
    • /
    • 2018
  • In modern power systems, distributed generators (DGs) result in high stress on system frequency stability. Apart from the intermittent nature of DGs, most DGs do not contribute inertia or damping to systems. As a result, a new control method referred to as a virtual synchronous machine (VSM) has been proposed, which brought new characteristics to inverters such as synchronous machines (SM). DGs employing an energy storage system (ESS) provide inertia and damping through VSM control. Meanwhile, energy storage presents some physical constraints in the VSM implementation level. In this paper, a VSM mathematical model is built and analyzed. The dynamic responses of the output active power are presented when a step change in the frequency occurs. The influences of the inertia constant, damping factor and operating point on the ESS volume margins are investigated. In addition, physical constraints are proposed based on these analyses. The proposed physical constraints are simulated using PSCAD/EMTDC software and tested through RTDS experiment. Both simulation and RTDS test results verify the analysis.

과도 안정도 해석 프로그램을 위한 최적 시 적분 알고리즘 선정방안 (Selection of the time Integration algorithm for transient stability analysis program)

  • 김동주;조윤성;장길수;이병준;권세혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.122-124
    • /
    • 2003
  • Power system analysis is generally based on computer simulation and time-domain simulation is used to assess it's dynamic performance. This paper deals with the selection of proper integration engine for large-scale power system dynamic simulation. Simulation results obtained from the selected algorithm are compared to those of commercial program.

  • PDF

Pulse-width Adjustment Strategy for Improving the Dynamic Inductor Current Response Performance of a Novel Bidirectional DC-DC Boost Converter

  • Li, Mingyue;Yan, Peimin
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.34-44
    • /
    • 2018
  • This paper presents a pulse-width adjustment (PWA) strategy for a novel bidirectional DC-DC boost converter to improve the performance of the dynamic inductor current response. This novel converter consists of three main components: a full-bridge converter (FBC), a high-frequency isolated transformer with large leakage inductance, and a three-level voltage-doubler rectifier (VDR). A number of scholars have analyzed the principles, such as the soft-switching performance and high-efficiency characteristic, of this converter based on pulse-width modulation plus phase-shift (PPS) control. It turns out that this converter is suitable for energy storage applications and exhibits good performance. However, the dynamic inductor current response processes of control variable adjustment is not analyzed in this converter. In fact, dc component may occur in the inductor current during its dynamic response process, which can influence the stability and reliability of the converter system. The dynamic responses under different operating modes of a conventional feedforward control are discussed in this paper. And a PWA strategy is proposed to enhance the dynamic inductor current response performance of the converter. This paper gives a detailed design and implementation of the PWA strategy. The proposed strategy is verified through a series of simulation and experimental results.

물결걸음새를 이용한 준정적 4족 보행로봇에 관한 연구 (A study for semi-static quadruped walking robot using wave gait)

  • 최기훈;김태형;유재명;김영탁
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.551-554
    • /
    • 2001
  • A necessity of remote control robots or various searching robots etc. that accomplish works given instead of human under long distance and extreme environment such as volcano, universe, deep-sea exploration and nuclear power plant etc. is increasing, and so the development and the research regarding these mobile robots are actively progressing. The wheel mobile robot or the track mobile robot have a sufficient energy efficiency under this en, but also have a lot of limits to accomplish works given which are caused from the restriction of mobile ability. Therefore, recently many researches for the walking robot with superior mobility and energy efficiency on the terrain, which is uneven or where obstacles, inclination and stairways exist, have been doing. The research for these walking robots is separated into fields of mechanism and control system, gait research, circumference environment and system condition recognition etc. greatly. It is a research field that the gait research among these is the centralist in actual implementation of walking robot unlike different mobile robots. A research field for gait of walking robot is classified into two parts according to the nature of the stability and the walking speed, static gait or dynamic gait. While the speed of a static gait is lower than that of a dynamic gait, a static gait which moves the robot to maintain a static stability guarantees a superior stability relatively. A dynamic gait, which make the robot walk controlling the instability caused by the gravity during the two leg supporting period and so maintaining the stability of the robot body spontaneously, is suitable for high speed walking but has a relatively low stability and a difficulty in implementation compared with a static gait. The quadruped walking robot has a strong point that can embody these gaits together. In this research, we will develope an autonomous quadruped robot with an asaptibility to the environment by selectry appropriate gait, element such as duty factor, stride, trajectory, etc.

  • PDF

복합발전의 공급전력 안정성 극대화를 위한 파력발전 PCS의 BESS 연동방안 연구 (A Study on the ESS Integration Plan with Inner PCS of Wave-Offshore Hybrid Generation System for Maximizing Power Profile Stability)

  • 정승민;김현욱;유연태;장길수
    • 조명전기설비학회논문지
    • /
    • 제28권5호
    • /
    • pp.82-91
    • /
    • 2014
  • The combined generator system by integrating several renewable energy sources can share the electrical infrastructure and therefore have the advantage of constructing not only the transmission system but also the power conversion system. Among the various combined renewable system, the wind power and wave power has a high possibility of future growth due to the economic feasibility in offshore environment. This kind of large-scale combined systems might be follow the determination by the transmission system operator's directions and control the output profile by focusing at PCC. However, both renewable energies are depend on the unpredictable environmental variation; it is needed to do the compensation devices. In this paper, the ESS compensation plan is proposed to do output determination of the combined generator system by paying attention to active power of utility grid with the analysis of the controllable elements of the wind and wave power generator. The improvement of the new application technique of the combined system is confirmed through using the PSCAD/EMTDC. The entire simulation process was designed by adopting the active power control according to the reference signal of TSO.