• Title/Summary/Keyword: Power supply saving

Search Result 137, Processing Time 0.02 seconds

Multilevel Inverter Development to Utilize Renewable Energy in Urban Railway Station (도시철도 역사 신재생에너지 활용을 위한 멀티레벨 인버터 개발)

  • Shin, Seungkwon;Kim, Hyungchul;Jung, Hosung;Park, Jong Young;Hyun, Byungsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.324-330
    • /
    • 2015
  • Energy Saving Methods in existing railway vehicle are considered by active approach such as regenerative energy storage and utilization, eco driving, etc. On the other hands, energy saving measures in railway station are operated by passive method such as reduction of operating time in ventilation system, cooing system and power equipment. To reduce energy and for independence in railway system, it requires an active energy saving measures. It needs to its own power source besides the power source of electric supply company such as renewable energy and regenerative energy and take the advantage of power storage system and stored power are used in optimum time. This paper deal with 3-level NPC inverter and T-type NPC inverter that used in various multi-level topology applicable to the railway system.

A Novel type of High-Frequency Transformer Linked Soft-Switching PWM DC-DC Power Converter for Large Current Applications

  • Morimoto Keiki;Ahmed Nabil A.;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.216-225
    • /
    • 2006
  • This paper presents a new circuit topology of DC busline switch and snubbing capacitor-assisted full-bridge soft-switching PWM inverter type DC-DC power converter with a high frequency link for low voltage large current applications as DC feeding systems, telecommunication power plants, automotive DC bus converters, plasma generator, electro plating plants, fuel cell interfaced power conditioner and arc welding power supplies. The proposed power converter circuit is based upon a voltage source-fed H type full-bridge high frequency PWM inverter with a high frequency transformer link. The conventional type high frequency inverter circuit is modified by adding a single power semiconductor switching device in series with DC rail and snubbing lossless capacitor in parallel with the inverter bridge legs. All the active power switches in the full-bridge inverter arms and DC busline can achieve ZVS/ZVT turn-off and ZCS turn-on commutation operation. Therefore, the total switching losses at turn-off and turn-on switching transitions of these power semiconductor devices can be reduced even in the high switching frequency bands ranging from 20 kHz to 100 kHz. The switching frequency of this DC-DC power converter using IGBT power modules is selected to be 60 kHz. It is proved experimentally by the power loss analysis that the more the switching frequency increases, the more the proposed DC-DC converter can achieve high performance, lighter in weight, lower power losses and miniaturization in size as compared to the conventional hard switching one. The principle of operation, operation modes, practical and inherent effectiveness of this novel DC-DC power converter topology is proved for a low voltage and large current DC-DC power supplies of arc welder applications in industry.

A Study on the Electric System Design by the Forecasting of Maximum Demand (최대수요전력 예측에 의한 전기계통 설계에 관한 연구)

  • 황규태;김수석
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.1
    • /
    • pp.29-39
    • /
    • 1992
  • In this paper, the basic idea of optimum electric system design by means of the forecasting of maximum demand is presented, and the load characteristics and practical operating conditions are based on the technical data. After reconstruction of th model plant by use of above method, power supply reliability, future extention, initial cost, and running cost saving effects are analyzed. As a result, it is verified that the systems wherein the power is supply to each load frm main transformer whose capacity is calculated by forecasting are economic rather than the systems wherein the power is supply to each electric feeders from each corresponding transformer.

  • PDF

A study on adaptation measures to climate crisis for water supply system of Jeju Special Self-Governing Province (제주특별자치도 상수도 기후위기 적응대책 연구)

  • Jinkeun Kim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.447-456
    • /
    • 2023
  • Risk assessment on Jeju Special Self-Governing Province(JSSGP)'s water supply facilities and establishment of adaptation measures for climate crisis factors were implemented. JSSGP's vulnerability to the climate crisis was high in the order of drought, heat wave, heavy rain and strong wind. As a drought adaptation measure, policies of water saving and revenue water ratio improvement were considered. As for the heat wave adaptation measure, the introduction of an advanced water treatment process was suggested in response to the increase of algae cell number which resulting in taste and odor problem. As for heavy rain adaptation measures, the installation and operation of automatic coagulant injection devices for water purification plants that take turbid surface water were proposed. As a measure to adapt to strong winds, stabilization of power supply such as installation of dual power line was proposed in preparation for power outages. It is expected that water facilities will be able to supply high-quality tap water to customers even under extreme climate conditions without interruption through risk assessment for climate crisis factors and active implementation of adaptation measures.

A Study on the manage of efficiency of electric facilities for a type of Medium-small building (중.소형 건축물설비의 효율적 전력관리방안 연구)

  • Lee, Sang-Chip;Park, In-Duck;Lee, Won-Goo;Kim, Dae-Gwun;Oh, Bong-Hwan;Lee, Hoon-Goo;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.838-840
    • /
    • 1998
  • The power demand has increased the groth of industry and improvement of life. Otherwise the power supply is more difficult. because of regional egoism, reinforcement for environment, and investment of money. The load installation should be promoted to rational power management, according to the network, inteligent, and high-function. Therefore, this paper is made a study for the method of energy saving and for energy saving of medium-small type small type-below 500kW medium type-between $500{\sim}1.000kW$.

  • PDF

High Frequency High Voltage 40kW Power System for Diagnosis X-ray (진단 X-선용 40kW 고주파 고압 전원 시스템)

  • 김학성;박영국;오준용;성기봉
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.192-198
    • /
    • 2003
  • Recently, the Inverter type X-ray generator is rapidly replacing the conventional single-phase or three-phase X-ray generator, it has several merits of space-saving: high accuracy and reproducibility. This paper presents a 40kw(12kV, 80mA) high tension generator system for diagnosis X-ray. The control circuit and design consideration of the proposed high tension power supply are given. Issues in the design of high voltage isolating transformer are discussed. Experimental results are presented to verify the performance of the designed power supply for varying load conditions. 1'he proposed apparatus has several advantages, e. g., the fast rising time of tube voltage, accuracy and reduced component size etc.

A Study on the grade marking system for saving energy of building. (건축물의 에너지절약 등급표시제에 관한 연구)

  • Lee, Sang-Chip;Kim, In-Soo;Kim, Seong-Nam;Oh, Bong-Hwan;Lee, Hoon-Goo;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1487-1489
    • /
    • 1999
  • The power demand has increased the groth of industry and improvement of life. In the past, the focus of an electric power company has been on the supply aspect of a management strategy, such as the stable provision of electric power through the construction of power equipment and least Cost planning. There has been a change of method in energy management. The balance of it seems to put forward to Demand Side Management(DSM) from Supply Side Management(SSM). Therefore, this paper is made a study for the method of energy grade of building.

  • PDF

Advanced LDC Test Bed Using Energy Recovery Technique for HEVs

  • Kim, Yun-Sung;Jung, Dong-Wook;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.911-919
    • /
    • 2013
  • This paper reports the development of test bed with the energy recovering technique using two-step boost converter. The device is utilized for LDC aging test of Hyundai Motor's LPI AVANTE HEV in mass production. The developed power recycle type test bed is designed as 1.5 kW class to test up to the maximum load power of LDC and is also designed to supply scant power supply up to 500 W after power recycle. The theoretical design analysis and operational characteristics analysis results of test bed are reported, and its practicality and reliability are verified through the test result. Also, the finally developed test bed confirms approximately 79~85 % energy saving effect compared to the usual traditional aging test system.

Dual Utility AC Line Voltage Operated Voltage Source and Soft Switching PWM DC-DC Converter with High Frequency Transformer Link for Arc Welding Equipment

  • Morimoto Keiki;Ahmed NabilA.;Lee Hyun-Woo;Nakaoka Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.366-373
    • /
    • 2005
  • This paper presents two new circuit topologies of the dc busline side active resonant snubber assisted voltage source high frequency link soft switching PWM full-bridge dc-dc power converters acceptable for either utility ac 200V-rms or ac 400V-rms input grid. These high frequency switching dc-dc converters proposed in this paper are composed of a typical voltage source-fed full-bridge PWM inverter, high frequency transformer with center tap, high frequency diode rectifier with inductor input filter and dc busline side series switches with the aid of a dc busline parallel capacitive lossless snubber. All the active switches in the full-bridge arms as well as dc busline snubber can achieve ZCS turn-on and ZVS turn-off transition commutation with the aid of a transformer leakage inductive component and consequently the total switching power losses can be effectively reduced. So that, a high switching frequency operation of IGBTs in the voltage source full bridge inverter can be actually designed more than about 20 kHz. It is confirmed that the more the switching frequency of full-bridge soft switching inverter increases, the more soft switching PWM dc-dc converter with a high frequency transformer link has remarkable advantages for its power conversion efficiency and power density implementations as compared with the conventional hard switching PWM inverter type dc-dc power converter. The effectiveness of these new dc-dc power converter topologies can be proved to be more suitable for low voltage and large current dc-dc power supply as arc welding equipment from a practical point of view.

Technical-Economical Evaluation of Chain Vertical Alignment in Underground Urban Subways: The Case of Qom Subway, Line A

  • Abdi Kordani, Ali;Mehrara Molan, Amirarsalan
    • International Journal of Railway
    • /
    • v.7 no.2
    • /
    • pp.35-39
    • /
    • 2014
  • Urban subways are one of the main parts of urban transportation networks in every city that always requires much attention in order to improve its efficiency in aspects of safety, reliability speed and costs. As the viewpoint of costs, an accurate design, especially design of vertical alignment, can have a dominant role to reduce the costs of urban railway projects. This paper seeks to evaluate the advantages and disadvantages of designing chain vertical alignment for urban subways in compare to flat vertical alignment. To achieve this goal, line A of Qom subway in Iran was selected as a case study in this research. Five parameters considered in the technical-economical evaluation: (1) energy consumption, (2) rolling stock, (3) operation, (4) civil works and geotechnical and (5) hydrological, drainage and pumping. According to the results, a power saving of about 40% have been estimated in the chain vertical alignment for the train without regenerative braking in compare with the flat vertical alignment, although the power saving was calculated less than 10% for the train with regenerative braking. Finally it was found that due to the modern rolling stock technology, the chain vertical alignment represents fewer advantages in compare to the past years.