• 제목/요약/키워드: Power supply module

검색결과 266건 처리시간 0.023초

GreenIoT Architecture for Internet of Things Applications

  • Ma, Yi-Wei;Chen, Jiann-Liang;Lee, Yung-Sheng;Chang, Hsin-Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권2호
    • /
    • pp.444-461
    • /
    • 2016
  • A power-saving mechanism for smartphone devices is developed by analyzing the features of data that are received from Internet of Things (IoT) sensors devices to optimize the data processing policies. In the proposed GreenIoT architecture for power-saving in IoT, the power saving and feedback mechanism are implemented in the IoT middleware. When the GreenIoT application in the power-saving IoT architecture is launched, IoT devices collect the sensor data and send them to the middleware. After the scanning module in the IoT middleware has received the data, the data are analyzed by a feature evaluation module and a threshold analysis module. Based on the analytical results, the policy decision module processes the data in the device or in the cloud computing environment. The feedback mechanism then records the power consumed and, based on the history of these records, dynamically adjusts the threshold value to increase accuracy. Two smart living applications, a biomedical application and a smart building application, are proposed. Comparisons of data processed in the cloud computing environment show that the power-saving mechanism with IoT architecture reduces the power consumed by these applications by 24% and 9.2%.

다결정 실리콘 태양광 모듈의 옥외 성능 평가 (Outdoor Performance Evaluation of Multi-Crystalline Silicon Photovoltaic Module)

  • 이유리;김우경;정재학
    • Current Photovoltaic Research
    • /
    • 제7권3호
    • /
    • pp.71-75
    • /
    • 2019
  • Solar energy is one of the renewable energy sources. It can respond to expanding energy demand. A solar cell module is designed to have a durability that can be developed over a long period of 25 years to be installed outdoors and perform like a stable power supply. We need Standard Test Condition (STC)-based power output data before and after testing to measure the power output of existing modules. The modules are shown to reduce power output by comparing data before and after outdoor experiments regardless of whether they are indoor or outdoor. It is easy to compare the power output quantities through the module simulator in the indoor. However, it takes a lot of testing time and costs to compare the power output on outdoor in the case of a high number of modules and distance from the module simulator. It can save time and costs if we can check the power output using the data in outdoor. We have used the long-term outdoor test to find the elements out that corresponds to the reductions in power output quantities. We have conducted research that matched the actual and the tests.

산업용 분전반 적용을 위한 3상 전력 관리 장치 시작품 제작에 대한 연구 (The Prototype-Making of a Three-Phase Power Management Device for the Industrial Switchgear)

  • 고윤석;신현용
    • 한국전자통신학회논문지
    • /
    • 제5권5호
    • /
    • pp.498-503
    • /
    • 2010
  • 최근, 전력공급의 안정성과 신뢰성 그리고 고품질화를 위해 인터넷을 기반으로 하는 산업용 디지털 분전반이 새롭게 요구되고 있다. 따라서 본 논문에서는 3상 4선식 전력공급방식을 기반으로 하는 산업용 3상 분전반이 설계된다. 그리고 3상 산업용 분전반을 위한 전력관리 모듈이 시험 제작되며, 끝으로, 3상 전구 부하 시험을 통해 시작품의 3상 전압, 전류 측정 기능이 검증된다.

전력품질 안정화용 비대칭 하이브리드 슈퍼커패시터 셀 및 모듈 특성 (The Characteristics of Asymmetric Hybrid Supercapacitor Cells and Modules for Power Quality Stabilization)

  • 이병관;맹주철;이종규;윤중락
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.617-621
    • /
    • 2016
  • In addition to the energy storage facilities based on high power technologies, Electric double layer capacitors(EDLC) are today's candidate for power quality stabilization. However, its low energy density is often inhibiting factor for application of electric power industry. Hybrid supercapacitor is an promising energy storage device that positioned between conventional EDLC and Li-ion battery. This paper describes the preparation and characteristics of a hybrid supercapacitor and module for power quality stabilization. A cylindrical 3200F hybrid supercapacitor ($60{\times}74.5mm$) was assembled by using the $Li_4Ti_5O_{12}$ electrode as an anode and activated carbon as a cathode. It shows 2.5 times higher energy density than conventional EDLC with the same volume. In order to determine the characteristics of the hybrid supercapacitor Module for uninterruptible power supply (UPS), hybrid supercapacitor cells were connected in series with active balancing circuit. At even the high current density of 14A(10C), Module prepared by 18 cells showed the capacitance of 170F at 30~50V, suggesting the applicability for UPS.

High-Efficiency Power Conditioning System for Grid-Connected Photovoltaic Modules

  • Choi, Woo-Young;Choi, Jae-Yeon
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.561-567
    • /
    • 2011
  • This paper presents a high-efficiency power conditioning system (PCS) for grid-connected photovoltaic (PV) modules. The proposed PCS consists of a step-up DC-DC converter and a single-phase DC-AC inverter for the grid-connected PV modules. A soft-switching step-up DC-DC converter is proposed to generate a high DC-link voltage from the low PV module voltage with a high-efficiency. A DC-link voltage controller is presented for constant DC-link voltage regulation. A half-bridge inverter is used for the single-phase DC-AC inverter for grid connection. A grid current controller is suggested to supply PV electrical power to the power grid with a unity power factor. Experimental results are obtained from a 180 W grid-connected PV module system using the proposed PCS. The proposed PCS achieves a high power efficiency of 93.0 % with an unity power factor for a 60 Hz / 120 Vrms AC power grid.

차세대 저궤도 소형위성 적용을 위한 전력시스템 설계 (Power System Design for Next Generation LEO Satellite Application)

  • 박성우;박희성;장진백;장성수
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2005년도 춘계학술대회논문집
    • /
    • pp.283-287
    • /
    • 2005
  • In this paper, one general approach is proposed for the design of power system that can be applicable for next generation LEO satellite application. The power system consists of solar panels, battery, and power control and distribution unit(PCDU). The PCDU contains solar array modules, battery interface modules, low-voltage power distribution modules, high-voltage distribution modules, heater power distribution modules, on-board computer interface modules, and internal DC/DC converter modules. The PCDU plays roles of protection of battery against overcharge by active control of solar array generated power, distribution of unregulated electrical power via controlled outlets to bus and instrument units, distribution of regulated electrical power to selected bus and instrument units, and provision of status monitoring and telecommand interface allowing the system and ground operate the power system, evaluate its performance and initiate appropriate countermeasures in case of abnormal conditions. We review the functional schemes of the main constitutes of the PCDU such as the battery interface module, the auxiliary supply module, solar array regulators with maximum power point tracking(MPPT) technology, heater power distribution modules, spacecraft unit power distribution modules, and instrument power distribution module.

  • PDF

연장급전 전압강하 계산을 위한 전기철도 급전 시뮬레이터의 검증에 관한 연구 (A Study on Verification of PowerRail based on Voltage Drop under Extended Feeding Condition)

  • 김주락
    • 전기학회논문지
    • /
    • 제64권2호
    • /
    • pp.331-337
    • /
    • 2015
  • The power flow analysis of electrified railway is required complicated calculation, because of variable load. Train runs trough rail supplied by electric power therefore, the load value in electrified railway system fluctuates along time. The power flow algorithm in electrified railway system is different from general power system, and the power flow simulation is peformed by the particular simulation software. Powerail is simulation software for analysis of traction power supply system developed by KRRI, in 2008. This consists of load forecasting module, including TPS and time scheduling, and power flow module. This software was verified by measured current under normal feeding condition, however, has not been verified by voltage on the condition of extended feeding. This paper presents the verification of PowerRail based on voltage drop under extended feeding condition. This is performed by comparing simulation result with field test. Field test and simulation is done in commercial railway line.

회생제동 전자제어 유압모듈을 이용한 하이브리드 차량의 에너지 회수 알고리즘 개발 (Development of Energy Regeneration Algorithm using Electro-Hydraulic Braking Module for Hybrid Electric Vehicles)

  • 여훈;김현수;황성호
    • 유공압시스템학회논문집
    • /
    • 제5권4호
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, an energy regeneration algorithm is proposed to make the maximum use of the regenerative braking energy for a parallel hybrid electric vehicle(HEV) equipped with a continuous variable transmission(CVT). The regenerative algorithm is developed by considering the battery state of charge(SOC), vehicle velocity and motor capacity. The hydraulic module consists of a reducing valve and a power unit to supply the front wheel brake pressure according to the control algorithm. In order to evaluate the performance of the regenerative braking algorithm and the hydraulic module, a hardware-in-the-loop simulation (HILS) is performed. In the HILS system, the brake system consists of four wheel brakes and the hydraulic module. Dynamic characteristics of the HEV are simulated using an HEV simulator. In the HEV simulator, each element of the HEV powertrain such as internal combustion engine, motor, battery and CVT is modelled using MATLAB/$Simulink^{(R)}$. In the HILS, a driver operates the brake pedal with his or her foot while the vehicle speed is displayed on the monitor in real time. It is found from the HILS that the regenerative braking algorithm and the hydraulic module suggested in this paper provide a satisfactory braking performance in tracking the driving schedule and maintaining the battery state of charge.

  • PDF

Three-Phase Soft Switching Sinewave Inverter with Bridge Power Module Package Configurated Auxiliary Resonant AC Link Snubber

  • Iyomori Hisashi;Nagai Shin-ichiro;Shiraishi Kazuhiro;Ahmed Tarek;Eiji Hiraki;Mutsuo Nakaoka
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.507-510
    • /
    • 2003
  • This paper presents a novel prototype of tile three-phase bridge power block module type a auxiliary resonant AC link snubber circuit, which is effectively used for the three-phase voltage source type sinewave soft switching PWM inverter using IGBTs. Its operating principle Is described for current source load model, along with its practical design approach based on the simulation data. The performance evaluation of the three-phase voltage source type snewave soft switching PWM inverter incorporating a single three-phase bridge mo여le of active auxiliary resonant AC link snubber treated here Is illustrated, which is concerned with power duality efficiency power loss analysis. This inverter is discussed as compared with those of tile three-phase voltage source type sinewave hard switching PWM inverter. The power loss analysis of this soft switching PWM Inverter using IGBT power modules is evaluated on the basis of the measured v-i characteristics and switching power losses of IGBT, and antiparaliel diodes. The practical effectiveness of this inverter is proven by the power loss analysis for distributed power supply.

  • PDF

DSC를 활용한 상용전력변환 시스템에 관한 연구 (A study on the power conversion system using Dye-Sensitized Solar cell)

  • 김진영;박성준;박해명;김우성;김휘영;김희제
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.195-198
    • /
    • 2006
  • The technology of Solar Power conversion System is defined as a solar cell that changes the sol ar energy into the direct electric energy, power conversion and control technology that convert the dc power into ac power The solar cell module, power conversion, and a control part in component parts consisting a solar power conversion system have influence on its performance. The roles of power conversion and a control part supply the direct current generated by solar cell module for a load with high efficiency as conveniently as possible in this study, the power conversion systen that can generate solar power using DSC module was developed and its characteristics was experimented. The characteristics of the DSC power conversion system including MOSFET and DSP micro processor, high speed devices, was simulated using Psim. According to the results, converter and inverter was manufactured in detail and the performance characteristics were studied.

  • PDF