• Title/Summary/Keyword: Power steering

Search Result 390, Processing Time 0.023 seconds

The Steering Characteristics of Military Tracked Vehicles with Considering Slippage of Roadwheel (로드휠의 슬립을 고려한 군용 궤도차량의 조향특성에 관한 연구)

  • Lim, Won-Sik;Yoon, Jae-Seop;Kang, Sang-Wook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.57-66
    • /
    • 2009
  • In this paper, the steering characteristics of tracked vehicles are studied for the improvement of steering performance. The important design factor of military vehicles is high mobility. It is influenced by weight of a vehicle, engine capacity, power-train, and steering system. The military vehicle, which is equipped with caterpillar, has unique steering characteristics and is quite different from that of a wheeled vehicle. The steering of tracked vehicles is operated in the power pack due to different speeds of both sprockets. Under cornering conditions, power split and power regeneration are happened in the power pack. In case of power regeneration, power is transferred outside track after adding engine power and power inputted inside track from the ground. However, excessive power regeneration is transferred in the power pack. It damages mechanical elements. Therefore, it is necessary to analyze the steering system and check mentioned problem above. In this study, the detailed dynamic model of steering system is presented, which includes slippage between track and roadwheel, inertia force, and inertia moment. Finally, our model is compared with the Kitano model and we verified the validity of the model.

A Study on Design and Development of the Electronically Controlled Power Steering Controller far a Passenger Car (승용차용 전자계어식 파워스티어링 콘트롤러의 설계 및 개발에 관한 연구)

  • 김광열;김태훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.166-174
    • /
    • 2002
  • Power steering systems far automobile are becoming ever more popular because they reduce steering efforts of the drivers, especially during parking lot maneuver. In this paper, the controller of the motor driven hydraulic power steering(MDHPS) has been designed and developed. This system uses a power source of DC motor instead of engine power source for power steering drive oil pump. The developed MDHPS system is accomplished a highly sensitive power steering resulted from electronic control under variable driving condition. Furthermore, this system is more improvement than type of engine driving far fuel economy.

Control Logic Using Torque Map for a Column-Type Electric Power Steering System (토크맵을 이용한 칼럼형 전기식 동력조향 시스템의 제어로직)

  • 김지훈;송재복
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.186-193
    • /
    • 2000
  • EPS(Electric Power Steering) systems have many advantages over traditional hydraulic power steering systems in space efficiency engine efficiency and environmental compatibility. In this paper an EPS system control logic using a torque map is proposed. The main function of the EPS system is to reduce the steering torque exerted by a driver by assist of an electric motor. Vehcile speed steering torque and steering wheel angle are measured and fed back to the EPS control system where appropriate assist torque is generated to assist the operator's steering effort. Another capability of the EPS system for easy adaptation to different steering feels via simple tuning is demonstrated by the experiments. It will be also verified that the EPS system can also improve damping and return performance of the steering wheel by control of the assist motor.

  • PDF

Reliability Analysis of 4WS Elements Subjected to Dynamic Load (동적하중을 고려한 4륜 조향장치 부품의 신뢰성 해석)

  • 양성모
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.2
    • /
    • pp.69-73
    • /
    • 1998
  • With increased loads in steered wheels and wider section tires the effort required at the steering wheel makes the driver's job very tiring and difficult. Improvements such as an increase in the mechanical efficiency of the steering system or lower steering box ratios help the reduce driver fatigue. Now using of power steering is increasing. It needs to be considering parts size of steering system as using power steering. This paper presents adjust part size of steering system form estimating reliability according to reducing torque under the dynamic load, In this paper, the spider of universial joint is selected to prove relation between steering and power steering reliability.

  • PDF

Co-Simulation Technology Development with Electric Power Steering System and Full Vehicle (전동 조향 장치와 차량의 동시 시뮬레이션 기술 개발)

  • 장봉춘;소상균
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.94-100
    • /
    • 2004
  • Most power steering systems obtain the power by a hydraulic mechanism. Therefore, it consumes more energy because the oil power should be sustained all the times. Recently, to solve this problem the electric power system has been developed and become widely equipped in passenger vehicles. In this research the simulation integration technique for an electric power steering system with MATLAB/SIMULINK and a full vehicle model with ADAMS has been developed. A full vehicle model interacted with electronic control unit algorithm is concurrently simulated with an impulsive steering wheel torque input. The dynamic responses of vehicle chassis and steering system are evaluated. This integrated method allows engineers to reduce the prototype testing cost and to shorten the developing period.

Effects of Ground Surface Condition on Steering Force for Tractors with Electronic Power Steering System (노면상태가 전동조향식 트랙터 조향력에 미치는 영향)

  • Lee S. S.;Lee K. S.;Park W. Y.;Kim S. Y.;Lee J. Y.;Mun J. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.6 s.113
    • /
    • pp.327-332
    • /
    • 2005
  • In this study, the electronic power steering control system was developed and it was carried out to investigate experimentally the effect of the steering force for the on-road and off-road. The electronic power steering control system was engineered new trend system of power steering control system for tractor. It was composed of the electronic controller, detector, motor and mechanism mounted on tractor chassis. It was tested at the field in condition of tractor traveling speed 0 km/h, 3 km/h, 8 km/h, 11 km/h, 15 km/h, 18 km/h, 22 km/h, 25 km/h for measuring a maximum steering force. As a speed of tractor increased, a steering force decreased regardless of on-road or off-road. In addition, it is sufficiently a possibility of application of the steering system of tractor.

Fuel Consuming Reduction by Power Steering System Optimization (동력 조향계 최적화에 의한 연비 개선)

  • Jo, Sok-Hyun;Nam, Kyung-Woo;Kwon, O-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.119-124
    • /
    • 2006
  • This paper deals with energy-saving effort in the hydraulic power steering system. Commonly, the hydraulic power steering systems are used for passenger cars and the reduction of pumping loss under non-steering condition is important to improve fuel economy. Experiments and simulations are performed simultaneously to examine the main factors to reduce the pumping loss-pressure loss and flow rate of the power steering systems. Fuel economy effect of the optimal design of power steering system is verified by vehicle test - more than 1% fuel consuming reduction is attained.

DEVELOPMENT OF AN ACTIVE FRONT STEERING SYSTEM

  • Kim, S.J.;Kwak, B.H.;Chung, S.J.;Kim, J.G.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.315-320
    • /
    • 2006
  • We have developed an active front steering system(AFS) with a planetary gear train, which can vary the steering gear ratio according to the vehicle speed and improve vehicle stability by superimposing steering angle. We conducted vehicle tests showing that co-operated control of AFS with ESP can improve vehicle stability by direct control of tire slip angle and that steering reaction torque during AFS intervention can be compensated by torque compensation using electric power steering.

Heat-Pressure Characterization of Power Steering Hose by Finite Element Analysis (자동차 파워스티어링 호스의 열내압 특성 유한요소해석)

  • Roh, Gi-Tae;Joen, Do-Hyung;Choi, Ju-Hyung;Cho, Jin-Rae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.409-414
    • /
    • 2003
  • Power steering hose is device that operation oil passes between steering gear box and oil pump by parts that is used to do steering system. Because this hose is receiving heat and pressure of high temperature, leakage can produce swaging from hitch of steel materials of done part. In this paper, we analyze swaging process of Power steering hose by finite element analysis, and achieved thermal and pressure analysis with this shape. We can analogize weakness part of hose through this result, and examine closely oil leakage and rubber failure mechanism and look for important design benevolence of power steering hose development.

  • PDF

Improvement of the Steering Feel of an Electric Power Steering System by Torque Map Modification

  • Lee Man Hyung;Ha Seung Ki;Choi Ju Yong;Yoon Kang Sup
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.792-801
    • /
    • 2005
  • This paper discusses a dc motor equipped electric power steering (EPS) system and demonstrates its advantages over a typical hydraulic power steering (HPS) system. The tire-road interaction torque at the steering tires is calculated using the 2 d.o.f. bicycle model, in other words by using a single-track model, which was verified with the J-turn test of a real vehicle. Because the detail parameters of a steering system are not easily acquired, a simple system is modeled here. In previous EPS systems, the assisting torque for the measured driving torque is developed as a boost curve similar to that of the HPS system. To improve steering stiffness and return-ability of the steering system, a third-order polynomial as a torque map is introduced and modified within the preferred driving torques researched by Bertollini. Using the torque map modification sufficiently improves the EPS system.