• Title/Summary/Keyword: Power split

Search Result 303, Processing Time 0.041 seconds

Analysis of Powertrain Characteristics for Output Split Type Plug-in Hybrid Electric Vehicle (출력분기 기반 플러그인 하이브리드 전기자동차의 동력전달 시스템 특성 분석)

  • Kim, Jeongmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.112-121
    • /
    • 2015
  • In this paper, powertrain of output split type plug-in hybrid electric vehicle is analyzed for the operation range of speed, torque, and power. First, it is assumed that the efficiency of motor is 100%. And, the speed and torque equations are derived based on the lever analogy. With the above equations, the simulations are performed for the powertrain of output split type plug-in hybrid electric vehicle. From the simulation results, it is found that the output torques of EV1 and series modes are larger than the EV2 and power split modes' ones. It means the EV1 and series modes can be used for the rapid acceleration. But the EV1 and series modes can be used only the velocity of under the 120 km/h. It is because the motor reaches its maximum speed when the velocity is over the 120 km/h for the EV1 and series modes. When the engine is turned on, the engine power is transmitted through the two motors. But, the power split mode shows the power split of engine at the output shaft, and it has the point of zero motor power. Thus, the transmission efficiency of the power split mode can be higher than the series mode's one, it the motor efficiency is considered.

Analysis on the Qualitative Performance of a Power Split/Circulation Transmission (동력분기/순환구조 동력전달계의 정성적 성능 해석)

  • Lim, W.S.;Lee, D.J.;Lee, J.M.;Park, Y.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.212-223
    • /
    • 1995
  • To improve the efficiency of a power transmission system with slip elements, power split/circulation system is applied. The performance of a power split/circulation system varies widely by the change of the followings; the layout of system, the type and gear ratio of planetary gear, the performance of slip element, etc. Therefore, when one designs such a power transmission system or when one determines the economic/power mode of system, a certain performance prediction method is needed. In this study, the internal power flow pattern of a power split/circulation system is theoretically analyzed on several transmission systems. And an effective performance prediction method(so called performance locus diagram) is presented. By this method, the effects of design factors can be easily understood and the qualitative performances of system can be clearly evaluated.

  • PDF

A Study of a Novel Wind Turbine Concept with Power Split Gearbox

  • Liu, Qian;Appunn, Rudiger;Hameyer, Kay
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.478-485
    • /
    • 2013
  • This paper focuses on the design and control of a new concept for wind turbines with a planetary gearbox to realize a power split. This concept, where the generated wind power is split into two parts, is to increase the utilization of the wind power and may be particularly suitable for large scale off-shore wind turbines. In order to reduce the cost of the power electronic devices, a synchronous generator, which is driven by the planetary gear, is directly connected to the power grid without electronic converter. A servo drive, which functions as the control actuator, is connected to the power grid by a power electronic converter. With small scale power electronic device, the current harmonics can also be reduced. The speed of the main shaft is controlled to track the optimal tip speed ratio. Meanwhile the speed of the synchronous generator is controlled to stay at the synchronous speed. The minimum rated power of the servo motor and the converter, is studied and discussed in this paper. Different variants of the wind turbine with a planetary gear are also compared. The controller for optimal tip speed ratio and synchronous speed tracking is given.

Compound CVT realizing Power Circulation Mode and Power Split Mode (동력순환형과 동력분류형을 구현 가능한 복합형 무단변속기)

  • Choi Sang-Hoon;Kim Yeon-Su
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.96-103
    • /
    • 2005
  • We designed the compound CVT(Continuously Variable Transmissions) by combining power circulation mode and power split mode, which have been proposed for connecting 2K-H I differential gear to the V- belt type CVU(Continuously Variable Unit), as an input coupled type. With the designed compound CVT, we carried out theoretical analysis and performance experiments for efficiency, speed ratio, power flow, and power transmission ratio. We proved that the compound CVT had a better performance than either of the power circulation mode or power split mode.

ANALYSIS OF PLANETARY GEAR HYBRID POWERTRAIN SYSTEM PART 1: INPUT SPLIT SYSTEM

  • Yang, H.;Cho, S.;Kim, N.;Lim, W.;Cha, S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.771-780
    • /
    • 2007
  • In recent studies, various types of multi mode electric variable transmissions of hybrid electric vehicles have been proposed. Multi mode electric variable transmission consists of two or more different types of planetary gear hybrid powertrain system(PGHP), which can change its power flow type by means of clutches for improving transmission efficiencies. Generally, the power flows can be classified into three different types such as input split, output split and compound split. In this study, we analyzed power transmission characteristics of the possible six input split systems, and found the suitable system for single or multi mode hybrid powertrain. The input split system used in PRIUS is identified as a best system for single mode, and moreover we identified some suitable systems for dual mode.

Performance Characteristics of Electric Powertrain Parts for Power Split Type HEV at Steady Speed (Power Split Type HEV 차량 정속주행시 전기동력부품 성능특성)

  • Kim, Chai-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.182-186
    • /
    • 2007
  • This paper studied performance characteristics of hybrid automotive to replace existing fossil fuel vehicles. Specially, about power split type HEV that is T-HEV's drive system when a vehicle drives at steady speed, monitored both output of each engine, motor and generator and battery SOC (state of charge) and analyzed performance characteristic of power transmission system and electricity power parts. This study shows those that acquired and analyzed information from signals between HCU and each controller of actual T- vehicle. From this study, it is confirmed that each conditions of EV and HEV drive can be a improvement with respect to the fuel efficiency of vehicles.

Analysis of Structural Characteristics of Power-Split Type Planetary Gear Train (동력 분배형 유성기어열의 구조 특성 분석)

  • Lee, Ki-Hun;Lee, Geun-Ho;Bae, In-Ho;Lee, Joung-Sang;Chong, Tae-Hyong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.311-314
    • /
    • 2008
  • The volume and size of the wind turbine gearbox has been increased with increasing transmitted power. The optimal sizing of gearbox is important due to limited space on the nacelle. The power-split type planetary gear train has been regarded as a better solution than conventional type from the point of view of the volume and weight. The purpose of this paper is to optimize the volume and weight of the gearbox by the analysis of structural characteristics and evaluation of strength of the power-split type planetary gear train.

  • PDF

Reducing Electromagnetic Radiation in Split Power Distribution Network of High-Speed Digital System

  • Shim, Hwang-Yoon;Kim, Jiseong;Yook, Jong-Gwan;Park, Han-Kyu
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.340-343
    • /
    • 2002
  • Electromagnetic(EM) radiation problems and their possible solutions are addressed in this paper for the split power plane of high-speed digital systems. Stitching and decoupling capacitors are proved to be very effective fur reducing signal noise, ground bounce as well as electromagnetic radiation from the split power plane. Simulations based on 3D-Finite Difference Time Domain (FDTD) method are utilized for the analysis of practical high frequency multi-layered PC main board

  • PDF

Analysis of EMI Problems in Split Power Distribution Network

  • Shim, Hwang-Yoon;Kim, Ji-Seong;Yook, Jong-Gwan;Park, Han-Kyu
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.2
    • /
    • pp.75-80
    • /
    • 2002
  • Signal integrity problems and their possible solutions are addressed in this paper for split power plane of high-speed digital systems. Stitching and decoupling capacitors are proved to be very effective for reducing signal noise, ground bounce as well as electromagnetic radiation from the split power plane. Simulations based on 3D-Finite Difference Time Domain (FDTD) method are utilized for the analysis of practical high frequency multi-layered PC main board.

Analysis of the Influence of an Architecture on Vehicle Performances (입력 분기식 하이브리드 동력전달계의 구조별 성능 분석)

  • Yang, Ho-Rim;Jo, Nam-Uk;Cho, Sung-Tae;Lim, Won-Sik;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.109-112
    • /
    • 2006
  • In the recent studies, various types of multi mode electric variable transmission for hybrid electric vehicle have been proposed. Multi mode electric variable transmission consists of two or more different type planetary gear hybrid powertrain system(PGHP), which can change its power flow type by means of clutches for improving transmission efficiencies. Generally the power flows can be classified into three different types such as Input split, output split nd compound split. In This paper, we present velocity and torque equations of the input-split powertrain and analyze its optimal Performances. There are six combinations of the input-split powertrain, each combination has various lever length. We find optimal planetary gear ratios for fuel economy and acceleration performance, and compare performances of each combination.

  • PDF