• Title/Summary/Keyword: Power reduction scheme

Search Result 392, Processing Time 0.028 seconds

New Peak-to-Average Power Ratio Reduction Scheme for an OFKM-CDMA System (OFDM-CDMA 시스템에서 새로운 PAPR 감쇄기법)

  • 주양익;이연우;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.7B
    • /
    • pp.1320-1325
    • /
    • 2000
  • A very simple and effective peak power reduction scheme for a downlink OFDM-CDMA system is proposed using the relationship between peak-to-average power ratio (PAPR) and out-of-phase autocorrelation. Since power spectrum and autocorrelation function are Fourier transform pair, the PAPR property of the sequences can be estimated by the out-of-phase autocorrelation function of the spreading sequences. Thus, by scrambling the spread data in the frequency domain, we can reduce the sidelobe energy of autocorrelation, and at last, suppress PAPR in the proposed OFDM-CDMA system.

  • PDF

A Tone Injection PAPR Reduction Method using Multi-objective Optimization based on Weighted-sum Genetic Algorithm (가중합 유전자 알고리즘 기반의 다목적 최적화를 이용한 톤 삽입 PAPR 저감 기법)

  • Park, Soon-Kyu;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2C
    • /
    • pp.217-225
    • /
    • 2009
  • Tone injection scheme has been known as one of peak to average power ratio (PAPR) reduction methods deployable to multi-carrier system like orthogonal frequency division multiplexing (OFDM). The basic idea in tone injection scheme is to enforce the constellation size larger so that each of original constellation points is mapped into the preassigned distinct locations. According to the tone injection scheme, it increases symbol power highly induced inherently by expanding constellation to get optimal PAPR reduction. In the other hand, to get optimal power increase, the PAPR would be reduced insufficiently with limited tone injection signal. To withstand these problems, this paper consider the reduction of the PAPR and power increase problem simultaneously, Toward this, the tone injection scheme accomplished by employing the weighted sum genetic algorithm which has been utilized to solve multi-objective optimization problem (MOOP). The simulation results verifies that the proposed scheme can control the effective PAPR performance and alleviation of power increase flexibly by the weight value at the expense of relatively low complexity.

Selective Mapping of Partial Tones (SMOPT) Scheme for PAR Reduction in OFDM Systems (OFDM 시스템에서 PAR을 줄이는 SMOPT 기법)

  • Yoo Seung soo;Yoon Seok ho;Kim Sun yong;Song Iick ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4C
    • /
    • pp.230-238
    • /
    • 2005
  • An orthogonal frequency division multiplexing (OFDM) system consists of a number of independently modulated subcarriers and, thus, a high peak-to-average power ratio (PAR) can occur when the subcarriers are added coherently. The high PAR brings such disadvantages as an increased complexity of the analog-to-digital (ADC) and digital-to-analog (DAC) converters and a reduced efficiency of the radio frequency (RF) power amplifier. In this paper, we propose a novel PAR reduction scheme called selective mapping of partial tones (SMOPT). The SMOPT scheme has a reduced complexity, lower sensitivity to peak reduction tones (PRT) positions, and a shorter processing time as compared with the conventional tone reservation (TR) scheme. The performance of the SMOPT scheme is analyzed based on the IEEE 802.1la wireless local area network(WLAM) physical layer model. Numerical results show that the SMOPT scheme outperforms the TR scheme under various scenarios.

Reduction of Peak-to-Average Power Ratio of Multicarrier Modulation Signals with Adaptive Companding Scheme

  • Hou, Jun;Zhao, Xiangmo;Hui, Fei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3117-3130
    • /
    • 2016
  • High peak-to-average power ratio (PAPR) of transmitted signals is a major drawback in Multicarrier modulation (MCM) systems. Companding transform is a well-known method to reduce the PAPR without restrictions on system parameters such as the number of subcarriers, frame format and constellation type. In this paper, a novel adaptive companding scheme, mainly focuses on compressing the large signals into the desirable distribution, is proposed to reduce the PAPR with low implementation complexity. In addition, formulas to calculate its PAPR and bit error rate (BER) performance are also derived. Simulation results confirm that the proposed scheme can achieve an effective tradeoff between PAPR reduction and BER performance by carefully choosing the companding parameter.

Discontinuous PWM Scheme for Switching Losses Reduction in Modular Multilevel Converters

  • Jeong, Min-Gyo;Kim, Seok-Min;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1490-1499
    • /
    • 2017
  • The modular multilevel converter (MMC) is generally considered to be a promising topology for medium-voltage and high-voltage applications. However, in order to apply it to high-power applications, a huge number of switching devices is essential. The numerous switching devices lead to considerable switching losses, high cost and a larger heat sink for each of the switching device. In order to reduce the switching losses of a MMC, this paper analyzes the performance of the conventional discontinuous pulse-width modulation (DPWM) method and its efficiency. In addition, it proposes a modified novel DPWM method for advanced switching losses reduction. The novel DPWM scheme includes an additional rotation method for voltage-balancing and power distribution among sub modules (SMs). Simulation and experimental results verify the effectiveness and performance of the proposed modulation method in terms of its switching losses reduction capability.

A Scheme on Reduction of NPP Liquid Effluent Activity

  • Kim, Wi-Soo;Yang, Yang-Hee;Kim, Hee-Guen
    • Nuclear Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.9-21
    • /
    • 2002
  • Recently each domestic NPP has achieved zero release in liquid effluent activity. However, when looking back past experiences in world nuclear power operation, it is thought that another maximum activity reduction in the released liquid effluent just prior to falling it into environment, if possible, will bring a good effect in PA viewpoint. As the intent of applying the safety concept of diversity to conducting the above activity reduction measure, a scheme passing that effluent through the Deposition Bed just before discharging it into ocean environment was divised. Both Zeolite and "the mixed "Anthracite-sand" were derived as the main activity adsorption medium used in the Deposition Bed, and the schematic drawings of this Bed were presented.

A techno-economic analysis of partial repowering of a 210 MW coal fired power plant

  • Samanta, Samiran;Ghosh, Sudip
    • Advances in Energy Research
    • /
    • v.3 no.3
    • /
    • pp.167-179
    • /
    • 2015
  • This paper presents a techno-economic analysis of a partial repowering scheme for an existing 210 MW coal fired power plant by integrating a gas turbine and by employing waste heat recovery. In this repowering scheme, one of the four operating coal mills is taken out and a new natural gas fired gas turbine (GT) block is considered to be integrated, whose exhaust is fed to the furnace of the existing boiler. Feedwater heating is proposed through the utilization of waste heat of the boiler exhaust gas. From the thermodynamic analysis it is seen that the proposed repowering scheme helps to increase the plant capacity by about 28% and the overall efficiency by 27%. It also results in 21% reduction in the plant heat rate and 29% reduction in the specific $CO_2$ emissions. The economic analysis reveals that the partial repowering scheme is cost effective resulting in a reduction of the unit cost of electricity (UCOE) by 8.4%. The economic analysis further shows that the UCOE of the repowered plant is lower than that of a new green-field power plant of similar capacity.

A low-complexity PAPR reduction SLM scheme for STBC MIMO-OFDM systems based on constellation extension

  • Li, Guang;Li, Tianyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2908-2924
    • /
    • 2019
  • Multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) is widely applied in wireless communication by virtue of its excellent properties in data transmission rate and transmission accuracy. However, as a major drawback of MIMO-OFDM systems, the high peak-to-average power ratio (PAPR) complicates the design of the power amplifier at the receiver end. Some available PAPR reduction methods such as selective mapping (SLM) suffer from high computational complexity. In this paper, a low-complexity SLM method based on active constellation extension (ACE) and joint space-time selective mapping (AST-SLM) for reducing PAPR in Alamouti STBC MIMO-OFDM systems is proposed. In SLM scheme, two IFFT operations are required for obtaining each transmission sequence pair, and the selected phase vector is transmitted as side information(SI). However, in the proposed AST-SLM method, only a few IFFT operations are required for generating all the transmission sequence pairs. The complexity of AST-SLM is at least 86% less than SLM. In addition, the SI needed in AST-SLM is at least 92.1% less than SLM by using the presented blind detection scheme to estimate SI. We show, analytically and with simulations, that AST-SLM can achieve significant performance of PAPR reduction and close performance of bit error rate (BER) compared to SLM scheme.

Adaptive Power Control Using Large Scale Antenna of the Massive MIMO System in the Mobile Communication

  • Ha, Chang-Bin;Jang, Byung-Jun;Song, Hyoung-Kyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3068-3078
    • /
    • 2015
  • Although the massive MIMO system supports a high throughput, it requires a lot of channel information for channel compensation. For the reduction of overhead, the massive MIMO system generally uses TDD as duplexing scheme. Therefore, the massive MIMO system is sensitive to rapidly changing fast fading in according to time. For the improvement of reduced SINR by fast fading, the adaptive power control is proposed. Unlike the conventional scheme, the proposed scheme considers mobility of device for adaptive power control. The simulation of the proposed scheme is performed with consideration for mobility of device. The result of the simulation shows that the proposed scheme improves SINR. Since SINR is decreased in according to the number of device in the network by unit of cell, each base station can accommodate more devices by the proposed scheme. Also, because the massive MIMO system with high SINR can use high order modulation scheme, it can support higher throughput.

A Predictive control technique of Series Active Power Filter for Harmonic Reduction in Power System (전력 계통 시스템에서 고조파 저감을 위한 직렬형 능동 전력 필터의 예측형 제어 기법)

  • Kim, Myung-Bok;Moon, Gun-Woo;Youn, Myung-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.187-191
    • /
    • 2001
  • A predictive control scheme, as a new control scheme, of series active power filter is presented and analyzed in this paper. It is composed of cascaded control scheme. Its validity is proved through simulations using PSIM.

  • PDF