• Title/Summary/Keyword: Power oscillation

Search Result 541, Processing Time 0.029 seconds

Research of the Mechanism of Low Frequency Oscillation Based on Dynamic Damping Effect

  • Liu, Wenying;Ge, Rundong;Zhu, Dandan;Wang, Weizhou;Zheng, Wei;Liu, Fuchao
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1518-1526
    • /
    • 2015
  • For now, there are some low frequency oscillations in the power system which feature low frequency oscillation with positive damping and cannot be explained by traditional low frequency oscillation mechanisms. Concerning this issue, the dynamic damping effect is put forward on the basis of the power-angle curve and the study of damping torque in this article. That is, in the process of oscillation, damping will dynamically change and will be less than that of the stable operating point especially when the angle of the stable operating point and the oscillation amplitude are large. In a situation with weak damping, the damping may turn negative when the oscillation amplitude increases to a certain extent, which may result in an amplitude-increasing oscillation. Finally, the simulation of the two-machine two-area system verifies the arguments in this paper which may provide new ideas for the analysis and control of some unclear low frequency phenomena.

Power Control Strategies for Single-Phase Voltage-Controlled Inverters with an Enhanced PLL

  • Gao, Jiayuan;Zhao, Jinbin;He, Chaojie;Zhang, Shuaitao;Li, Fen
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.212-224
    • /
    • 2018
  • For maintaining a reliable and secure power system, this paper describes the design and implement of a single-phase grid-connected inverter with an enhanced phase-locked loop (PLL) and excellent power control performance. For designing the enhanced PLL and power regulator, a full-bridge voltage-controlled inverter (VCI) is investigated. When the grid frequency deviates from its reference values, the output frequency of the VCI is unstable with an oscillation of 2 doubling harmonics. The reason for this oscillation is analyzed mathematically. This oscillation leads to an injection of harmonics into the grid and even causes an output active power oscillation of the VCI. For eliminating the oscillation caused by a PLL, an oscillation compensation method is proposed. With the proposed method, the VCI maintains the original PLL control characteristics and improves the PLL robustness under grid frequency deviations. On the basis of the above analysis, a power regulator with the primary frequency and voltage modulation characteristics is analyzed and designed. Meanwhile, a small-signal model of the power loops is established to determine the control parameters. The VCI can accurately output target power and has primary frequency and voltage modulation characteristics that can provide active and reactive power compensation to the grid. Finally, simulation and experimental results are given to verify the idea.

The Oscillation Frequency of CML-based Multipath Ring Oscillators

  • Song, Sanquan;Kim, Byungsub;Xiong, Wei
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.6
    • /
    • pp.671-677
    • /
    • 2015
  • A novel phase interpolator (PI) based linear model of multipath ring oscillator (MPRO) is described in this paper. By modeling each delay cell as an ideal summer followed by a single pole RC filter, the oscillation frequency is derived for a 4-stage differential MPRO. It is analytically proved that the oscillation frequency increases with the growth of the forwarding factor ${\alpha}$, which is also confirmed quantitatively through simulation. Based on the proposed model, it is shown that the power to frequency ratio keeps constant as the speed increases. Running at the same speed, a 4-stage MPRO can outperform the corresponding single-stage ring oscillator (SPRO) with 27% power saving, making MPRO with a large forwarding factor ${\alpha}$ an attractive option for lower power applications.

Analysis of Combustion Oscillation and its Suppression in a Silo Type Gas Turbine Combustor (Silo 형 가스터빈 연소기에서 발생하는 연소진동 분석 및 저감)

  • Seo, Seok-Bin;Ahn, Dal-Hong;Cha, Dong-Jin;Park, Jong-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.126-130
    • /
    • 2009
  • The present study describes an investigation into the characteristics of combustion oscillation and its suppression instability of a silo type gas turbine combustor in commercial power plant. Combustion oscillation is occurred the combustor in near full load during operation. As a result of FFT analysis of the combustion dynamics, the frequency of the oscillation is analyzed as the 1'st longitudinal mode of acoustic resonance of the combustor. For suppress of the instability, combustion tuning with adjust of fuel valve schedule is carried out, which changes equivalent ratio of each burners. As the result, the oscillation is successfully reduced with meeting the level of NOx emission regulation.

Analysis of Switching Clamped Oscillations of SiC MOSFETs

  • Ke, Junji;Zhao, Zhibin;Xie, Zongkui;Wei, Changjun;Cui, Xiang
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.892-901
    • /
    • 2018
  • SiC MOSFETs have been used to improve system efficiency in high frequency converters due to their extremely high switching speed. However, this can result in undesirable parasitic oscillations in practical systems. In this paper, models of the key components are introduced first. Then, theoretical formulas are derived to calculate the switching oscillation frequencies after full turn-on and turn-off in clamped inductive circuits. Analysis indicates that the turn-on oscillation frequency depends on the power loop parasitic inductance and parasitic capacitances of the freewheeling diode and load inductor. On the other hand, the turn-off oscillation frequency is found to be determined by the output parasitic capacitance of the SiC MOSFET and power loop parasitic inductance. Moreover, the shifting regularity of the turn-off maximum peak voltage with a varying switching speed is investigated on the basis of time domain simulation. The distortion of the turn-on current is theoretically analyzed. Finally, experimental results verifying the above calculations and analyses are presented.

A Study on the Low Frequency Oscillation Using PMU Measurement Data (PMU 데이터를 이용한 저주파 진동분석 연구)

  • Kim, Yonghak;Nam, Suchul;Ko, Baekkyeong;Kang, Sungbum;Shim, Kwansik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.245-252
    • /
    • 2020
  • It is very important to evaluate on/off-line stability to operate the power system stably and economically. Until now, we have continuously secured the operation reliability of the power system through the evaluation of transient, voltage and small signal stability. This paper proposes that it is possible to operate in KWAMS by applying the multi-section analysis and subspace methods and verifying the reliability of the algorithms to directly estimate the dominant oscillation mode of the power system from the signal waveform acquired from the phasor measurement units. In addition, this paper shows that the dominant oscillation mode can be detected from real-time measurement data in power systems. Therefore, if we can monitor the state of the power system in real time, it is possible to avoid a large-scale power outage by knowing the possibility of the power system accident in advance.

Characterization of Combustion Oscillation and Reduction of Abnormal Oscillation in a Power Generation Gas Turbine (발전용 가스터빈에서 발생하는 연소진동 특성 및 이상연소진동의 저감)

  • Seo, Seok-Bin;Ahn, Dal-Hong;Chung, Jae-Hwa
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1682-1685
    • /
    • 2004
  • Gas Turbine combustors for power plant can be reduced NOx emissions using lean premixed combustion technology. But the combustors are likely to occur combustion oscillations which damage operation reliability and mechanical life of the gas turbines. In this paper, characterizations of oscillation in a gas turbine combustor for power plant are presented. Combustion dynamics occur $1{\sim}1.5$ psi in amplitude with low frequency less than 140Hz during normal operation. An abnormal high level dynamics, 2.0 psi amplitude occur at 125 Hz frequency. Abnormal combustion oscillation is reduced by modulation of fuel supply valve control schedule.

  • PDF

Damping of Low Frequency Oscillation in Power System using Robust Control of Superconductor Flywheel Energy Storage System (초전도 플라이휠 에너지 저장장치의 강인제어를 이용한 전력계통의 저주파진동 억제)

  • Lee, J.P.;Kim, H.G.
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.52-59
    • /
    • 2012
  • In this paper, the robust superconductor flywheel energy storage system(SFESS) controller using $H_{\infty}$ control theory was designed to damp low frequency oscillation of power system. The main advantage of the $H_{\infty}$ controller is that uncertainties of power system can be included at the stage of controller design. Both disturbance attenuation and robust stability for the power system were treated simultaneously by using mixed sensitivity $H_{\infty}$ problem. The robust stability and the performance for uncertainties of power system were represented by frequency weighted transfer function. To verify control performance of proposed SFESS controller using $H_{\infty}$ control, the closed loop eigenvalue and the damping ratio in dominant oscillation mode of power system were analyzed and nonlinear simulation for one-machine infinite bus system was performed under disturbance for various operating conditions. The results showed that the proposed $H_{\infty}$ SFESS controller was more robust than conventional power system stabilizer (PSS).

Sensitivity Analysis of Power System Oscillation Modes Induced by Periodic Switching Operations of SVC by the RCF Method (RCF 기법을 이용한 SVC의 주기적 스위칭 동작에 의한 전력계통 진동모드 감도해석)

  • Kim, Deok-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.363-368
    • /
    • 2008
  • In this paper, the Resistive Companion Form(RCF) analysis method is applied to analyze small signal stability of power systems including thyristor controlled FACTS equipments such as SVC. The eigenvalue sensitivity analysis algorithm in discrete systems based on the RCF analysis method is presented and applied to the power system including SVC. As a result of simulation, the RCF analysis method is proved very effective to precisely calculate the variations of eigenvalues or newly generated unstable oscillation modes after periodic switching operations of SVC. Also the eigenvalue sensitivity analysis method based on the RCF analysis method enabled to precisely calculate eigenvalue sensitivity coefficients of controller parameters about the dominant oscillation mode after periodic switching operations in discrete systems. These simulation results are different from those of the conventional continuous system analysis method such as the state space equation and proved that the RCF analysis method is very effective to analyze the discrete power systems including periodically operated switching equipments such as SVC.

A Study on the Thermoacoustic Oscillation of an Air Column with Variable Cross Section Area (단면 변화가 있는 기주의 열음향진동에 관한 연구)

  • Kwon, Young Pil;Hong, Ha Pyo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.2
    • /
    • pp.131-139
    • /
    • 1988
  • The thermoacoustic oscillation induced in an air column with variable cross section area is investigated theoretically and experimentally. The onset condition of the oscillation is derived by equating the acoustic power production to the power dissipation. The power production at the heater is predicted by using the efficiency factor obtained by heat transfer analysis for a single wire in a uniform cross flow and considering the interference between heater wires. The power dissipation is estimated by measuring the attenuating coefficient from the pressure decay curve. The theoretical prediction to the onset condition of the oscillation is confirmed experimentally. The effect of the variation of the column cross section area on the onset condition is presented.

  • PDF