• Title/Summary/Keyword: Power modeling

Search Result 3,069, Processing Time 0.043 seconds

Effects of Wind Generation Uncertainty and Volatility on Power System Small Signal Stability

  • Shi, Li-Bao;Kang, Li;Yao, Liang-Zhong;Qin, Shi-Yao;Wang, Rui-Ming;Zhang, Jin-Ping
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.60-70
    • /
    • 2014
  • This paper discusses the impacts of large scale grid-connected wind farm equipped with permanent magnet synchronous generator (PMSG) on power system small signal stability (SSS) incorporating wind generation uncertainty and volatility. Firstly, a practical simplified PMSG model with rotor-flux-oriented control strategy applied is derived. In modeling PMSG generator side converter, the generator-voltage-oriented control strategy is utilized to implement the decoupled control of active and reactive power output. In modeling PMSG grid side converter, the grid-voltage-oriented control strategy is applied to realize the control of DC link voltage and the reactive power regulation. Based on the Weibull distribution of wind speed, the Monte Carlo simulation technique based is carried out on the IEEE 16-generator-68-bus test system as benchmark to study the impacts of wind generation uncertainty and volatility on small signal stability. Finally, some preliminary conclusions and comments are given.

Power Generator Modeling and Simulation for LNGC (LNGC용 Power Generator 모델링 및 시뮬레이션)

  • Hwang, Joon-Tae;Hong, Suk-Yoon;Kwon, Hyun-Wung;Lee, Kwang-Kook;Song, Jee-Hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.297-299
    • /
    • 2016
  • In this paper, Power Generator modeling for LNG ship has been performed and monitoring system has been developed in MATLAB/SIMULINK. The principal component of Power Generator are engine part(Diesel Engine, Turbine Engine) which provides the mechanical power and synchronous generator which convert the mechanical power into electrical power. Also, load sharing between paralleled generators has been performed to share a total load that exceeds the capacity of a single generator and designated ship lumped load simulations have been carried out. A validity of these systems has been verified by comparison between simulation results and estimated result from the designated lumped load.

  • PDF

Systematic Development of Mobile IoT Device Power Management: Feature-based Variability Modeling and Asset Development (모바일 IoT 디바이스 파워 관리의 체계적인 개발 방법: 휘처 기반 가변성 모델링 및 자산 개발)

  • Lee, Hyesun;Lee, Kang Bok;Bang, Hyo-Chan
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.460-469
    • /
    • 2016
  • Internet of Things (IoT) is an environment where various devices are connected to each other via a wired/wireless network and where the devices gather, process, exchange, and share information. Some of the most important types of IoT devices are mobile IoT devices such as smartphones. These devices provide various high-performance services to users but cannot be supplied with power all the time; therefore, power management appropriate to a given IoT environment is necessary. Power management of mobile IoT devices involves complex relationships between various entities such as application processors (APs), HW modules inside/outside AP, Operating System (OS), platforms, and applications; a method is therefore needed to systematically analyze and manage these relationships. In addition, variabilities related to power management such as various policies, operational environments, and algorithms need to be analyzed and applied to power management development. In this paper, engineering principles and a method based on them are presented in order to address these challenges and support systematic development of IoT device power management. Power management of connected helmet systems was used to validate the feasibility of the proposed method.

Investigating the Effects of Meteorological Disasters on Hydroelectric Power Generation Using a Structural Equation Modeling (구조방정식모형을 이용한 기상재해가 수력발전을 통한 전력 생산에 미치는 영향 분석)

  • Kim, Jiyoung;Byun, Sung ho;Yoo, Jiyoung;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.33-41
    • /
    • 2023
  • Recently, global warming has accelerated climate change, increased extreme weather phenomena, and increased the frequency and intensity of weather disasters, leading to increasing uncertainty about the power production of new and renewable energy that is sensitive to weather. In fact, it has been reported that a number of damage to hydroelectric power generation have occurred due to weather disasters. Therefore, using the hydroelectric power generation performance data of Chungju Dam, meteorological data of Chungju Meteorological Observatory, and operation data of Chungju Dam, this study investigated the effect of meteorological disasters on hydroelectric power generation through structural equation modeling considering the number and intensity of meteorological disasters per month. The results indicated that the increased drought occurrence affected the decreased hydroelectric power generation by about 38.3 %, however the increased hydroelectric power generation could not explained by the increased flood occurrence. In conclusion, an increased drought occurrence in future may significantly influence hydroelectric power generation.

A novel approach in analyzing agriculture and food systems: Review of modeling and its applications

  • Kim, Do-Gyun;Cho, Byoung-Kwan;Lee, Wang-Hee
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.2
    • /
    • pp.163-175
    • /
    • 2016
  • For the past decades, advances in computational devices have propelled mathematical modeling to become an effective tool for solving the black box of complex biological systems because of its prominent analytical power and comprehensive insight. Nevertheless, modeling is still limitedly used in the fields of agriculture and food which generally concentrate on producing experimental data rather than processing them. This study, hence, intends to introduce modeling in terms of its procedure types of structure, formulation, analyses, and software, with reviews of current notable studies from micro to macro scales so as to propose the modeling technique as a novel approach in discerning conundrums in agriculture and food systems. We expect this review to provide an eligible source for researchers who are willing to apply modeling techniques into the unexplored fields related to bio-systems that comprehensively include biology, nutrition, agriculture, food, animal science, and ecology.

Modeling of a Grid-Connected Wind Energy Conversion System for Dynamic Performance Analysis (동특성해석을 위한 계통연계 풍력발전 시스템의 모델링)

  • Choo, Yeoun-Sik;Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1358-1360
    • /
    • 2002
  • This paper presents a modeling and simulation of a utility-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm for the wind turbine and presents the relationship of wind turbine output, rotor speed, power coefficient, tip-speed ratio and wind speed when the wind turbine is operated under the maximum power control algorithm. The control objective is to extract maximum power from wind and transfer the power to the utility. This is achieved by controlling the pitch angle of the wind turbine blades. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor speed, pitch angle, and generator output.

  • PDF

Coastal-physical cceanographic aspects in relation to the tidal current power generation in the Uldolmok (울돌목 조류발전의 연안물리적 관점에서의 고찰)

  • Yum Ki-Dai;Lee Kwang Soo;Park Jin Soon;Kang Sok Kuh
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.516-519
    • /
    • 2005
  • The pilot tidal current power plant is to be constructed at the Uldolmok between Chindo and Haenam, during next year. and extensive coastal engineering research works have been carried out. In this paper we describes some observation results of the tide and tidal current. as well as modeling work in order to investigate the tide and tidal current regime change in relation to the tidal current power plant (TCPP) construction. The special modeling skill in order to consider the turbine operation in the TCPP is developed and applied to the estimation for the flow regime change by the simple layout of the tidal current power plant.

  • PDF

Basic Modeling of Jeju Power System using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 제주도 전력계통 기본 모델링)

  • Yoo, Hyun-Jae;Kim, Hak-Man;Park, Min-Won;Jung, Gyu-Won;Park, Jae-Se;Shin, Myong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.404-405
    • /
    • 2011
  • In this paper, we present basic modeling of Juju power system using PSCAD/EMTDC. In detail, models of bipolar HVDC system, power transmission line, basic thermal power plant, load, and wind farm have been developed for Jeju power system. For evaluating basic dynamic behavior, we tested the system with a simple scenario and the test result showed acceptable response.

  • PDF

Modeling and Parameter Identification of Coal Mill

  • Shin, Hwi-Beom;Li, Xin-Lan;Jeong, In-Young;Park, Jong-Man;Lee, Soon-Young
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.700-707
    • /
    • 2009
  • The coal mill used in the coal-fired power plants is modeled in view of the controller design rather than the educational simulator. The coal mass flow and the outlet temperature are modeled by reinvestigating the mass balance and heat balance models physically. The archived data from a plant database are utilized to identify the model parameters. It can be seen that the simulated model outputs are well matched with the measured ones. It is also expected that the proposed model is useful for the controller design.

Coastal-physical cceanographic aspects in relation to the tidal current power generation in the Uldolmok (울돌목 조류발전의 연안물리적 관점에서의 고찰)

  • Kang Sok Kuh;Yum Ki-Dai;Lee Kwang Soo;Park Jin Soon
    • New & Renewable Energy
    • /
    • v.1 no.2 s.2
    • /
    • pp.73-78
    • /
    • 2005
  • The pilot tidal current power plant is to be constructed at the Uldolmok between Chindo and Haenam, during next year, and extensive coastal engineering research works have been carried out. In this paper we describes some observation results of the tide and tidal current, as well as modeling work in order to investigate the tide and tidal current regime change In relation to the tidal current power plant [TCPP] construction. The special modeling skill in order to consider the turbine operation in the TCPP is developed and applied to the estimation for the flow regime change by the simple layout of the tidal current power plant.

  • PDF