• 제목/요약/키워드: Power loss reduction

검색결과 440건 처리시간 0.029초

전철용 공랭식 정류기 성능 향상방안에 관한 연구 (Research on improvement performance of air-cooled rectifier for Electric railway)

  • 한학수;최병운;배상만;김찬식;김영은
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.1489-1497
    • /
    • 2009
  • The rectifier for Electric railway is one of the most important facilities in DC urban railway which converts power from KEPCO(AC 22.9kV) to the electric mil car(DC 1.5kV), therefore it should be managed as the best condition for the drive. There are several things to cause performance degradation and deterioration of parts such as pollutants occurred by it established under the ground such as dust or foreign substances, rapid changes of driving current, and pyrogen which put the rectifier for Electric railway in malfunction. On the flow of time, the rectifier for Electric railway is causing a malfunction or failure which drive electric rail car in operations as well as loss of life. In this research we try to find the way of removing the various components of mal-functions in the performance of the rectifier for Electric railway by Over-Haul and reform itself, which gives us to get the chance investment of the reduction, the reliability of power supply to the electric rail car.

  • PDF

배관 침부식 손상 연속모사 장비 개발 및 실증 (Development and demonstration of an erosion-corrosion damage simulation apparatus)

  • 남원창;류경하;김재형
    • Corrosion Science and Technology
    • /
    • 제12권4호
    • /
    • pp.179-184
    • /
    • 2013
  • Pipe wall thinning caused by erosion and corrosion can adversely affect the operation of aged nuclear power plants. Some injured workers owing to pipe rupture has been reported and power reduction caused by unexpected pipe damage has been occurred consistently. Therefore, it is important to develop erosion-corrosion damage prediction model and investigate its mechanisms. Especially, liquid droplet impingement erosion(LDIE) is regarded as the main issue of pipe wall thinning management. To investigate LDIE mechanism with corrosion environment, we developed erosion-corrosion damage simulation apparatus and its capability has been verified through the preliminary damage experiment of 6061-Al alloy. The apparatus design has been based on ASTM standard test method, G73-10, that use high-speed rotator and enable to simulate water hammering and droplet impingement. The preliminary test results showed mass loss of 3.2% in conditions of peripheral speed of 110m/s, droplet size of 1mm-diameter, and accumulated time of 3 hours. In this study, the apparatus design revealed feasibility of LDIE damage simulation and provided possibility of accelerated erosion-corrosion damage test by controlling water chemistry.

유기 랭킨 사이클용 스크롤 팽창기 성능 시험에 관한 연구 (Effects of Channel Amplitude Ratio on Flow and Heat Transfer Characteristics of Primary Surface Heat Exchanger for ORC)

  • 문제현;박근태;김현진
    • 설비공학논문집
    • /
    • 제26권4호
    • /
    • pp.151-157
    • /
    • 2014
  • An algebraic scroll expander has been fabricated and tested in a R134a Rankine cycle with heat source of 20 kW. For the operating conditions of 20~26 bar and $90{\sim}93^{\circ}C$ at the expander inlet and 8~9 bar at the outlet, the expander produced the shaft output power of about 0.6~0.7 kW in the operating speed range of 1500~2000 rpm. These correspond to the expander efficiency of 40~45%. The volumetric efficiency increased with increasing of the expander speed, reaching to 80% at 2000 rpm. Comparing to numerical simulation results, mechanical efficiency from the test data was found to be considerably low by as much as 30%, indicating that reduction in the frictional loss should be made to improve the scroll expander efficiency.

고효율의 형광램프용 자기식 안정기의 개발 (Development of a High-Efficient Magneric Ballast for Fluorescentlamps)

  • 남택주;김희식
    • 조명전기설비학회논문지
    • /
    • 제12권2호
    • /
    • pp.121-128
    • /
    • 1998
  • 새로운 형태의 자기식 형광등 안정기를 설계 개발하여 고효율화 성능시험을 수행하였다. 새로운 철심재료인 고성능의 G-9 재료를 사용하고, 철심구조와 모양을 개선하였고 코일의 동선을 짧고 굵은 것으로 대체하여 직류저항 성분을 줄여서 안정기 자체의 에너지 손실을 감소시켰다. 반도체형 점등회로를 대폭 개선하여 순간 점등을 가능하게 하고 형광램프의 사용수명연장, 화재방지 등을 할 수 있게 하였다. 안정기 자체의 에너지 감소가 1.7Watt, 형광등 조명광 향상이 7.6[%] 증가 등 큰 에너지 절약을 보였다. 본 연구결과는 형광등 안정기의 기술 향상과 국가 전력소비 절감효과 등 중요한 의미가 있다.

  • PDF

공동주택 변압기용량 적정 산정을 위한 수용률 개선 및 사례 연구를 통한 경제성 평가 (The Study on Estimation of The Transformer Capacity of Housing and Economic Evaluation Using Case Studies)

  • 이윤상;서정열;신희상;조성민;김재철
    • 조명전기설비학회논문지
    • /
    • 제24권9호
    • /
    • pp.142-149
    • /
    • 2010
  • Interest in energy efficiency and savings have been rising internationally. For this reason, the domestic housing construction in the area of power equipment is being actively studied. Currently approximately 400,000 per year of domestic housing is being built. Applies to housing construction during the current transformer capacity low utilization and load factor has been applied has been designed. In other words, excessively high reserve capacity has been applied. According to this problem, initial facility costs and power losses will cause because transformer low utilization be appropriated. Thus, the energy efficiency drops. In this paper, analysis of past utilization of the housing transformer, and applying an appropriate demand factor has been analyzing the energy loss reduction. this analysis of current domestic conditions for the proper housing transformer scheme is to calculate the capacity.

Passive control of seismically excited structures by the liquid column vibration absorber

  • Konar, Tanmoy;Ghosh, Aparna Dey
    • Structural Engineering and Mechanics
    • /
    • 제36권5호
    • /
    • pp.561-573
    • /
    • 2010
  • The potential of the liquid column vibration absorber (LCVA) as a seismic vibration control device for structures has been explored in this paper. In this work, the structure has been modeled as a linear, viscously damped single-degree-of-freedom (SDOF) system. The governing differential equations of motion for the damper liquid and for the coupled structure-LCVA system have been derived from dynamic equilibrium. The nonlinear orifice damping in the LCVA has been linearized by a stochastic equivalent linearization technique. A transfer function formulation for the structure-LCVA system has been presented. The design parameters of the LCVA have been identified and by applying the transfer function formulation the optimum combination of these parameters has been determined to obtain the most efficient control performance of the LCVA in terms of the reduction in the root-mean-square (r.m.s.) displacement response of the structure. The study has been carried out for an example structure subjected to base input characterized by a white noise power spectral density function (PSDF). The sensitivity of the performance of the LCVA to the coefficient of head loss and to the tuning ratio have also been examined and compared with that of the liquid column damper (LCD). Finally, a simulation study has been carried out with a recorded accelerogram, to demonstrate the effectiveness of the LCVA.

전기철도 전철전력설비의 위험도 평가 기반 안전관리에 관한 연구 (A Risk Assessment Approach to Safety Management of Electric Railway Facilities)

  • 장윤석;최규형
    • 전기학회논문지
    • /
    • 제58권5호
    • /
    • pp.960-967
    • /
    • 2009
  • Power supply system of electric railway has a diversity of safety problems since it should supply high electric power to the trains moving high speed with a lot of passengers on board. This paper provides a risk assessment approach to safety management of the electric railway facilities. Construction of database from field accident information, risk assessment and management of the risk are carried out systematically to ensure the safety. The risk assessment includes hazard identification, cause analysis by FTA(Fault Tree Analysis), consequence analysis by EVA(Event Tree Analysis), and loss analysis. In terms of the severity and the probability of the accidents deduced by these analyses, the risk of the accidents is assessed by using a risk matrix designed for electric railway facilities. Based on the risk assessment, possible risk mitigation options are identified and evaluated by analyzing their impact on the risk reduction and their cost benefit ratio. The long-term safety of the electric railway facilities can be ensured by renewal of the risk assessment and the risk mitigation option analysis with continuous accident database update. The proposed approach is applied to the electric railway facilities of Korean railway based on the accident data from 2002 to 2008.

Appliance Load Profile Assessment for Automated DR Program in Residential Buildings

  • Abdurazakov, Nosirbek;Ardiansyah, Ardiansyah;Choi, Deokjai
    • 스마트미디어저널
    • /
    • 제8권4호
    • /
    • pp.72-79
    • /
    • 2019
  • The automated demand response (DR) program encourages consumers to participate in grid operation by reducing power consumption or deferring electricity usage at peak time automatically. However, successful deployment of the automated DR program sphere needs careful assessment of appliances load profile (ALP). To this end, the recent method estimates frequency, consistency, and peak time consumption parameters of the daily ALP to compute their potential score to be involved in the DR event. Nonetheless, as the daily ALP is subject to varying with respect to the DR time ALP, the existing method could lead to an inappropriate estimation; in such a case, inappropriate appliances would be selected at the automated DR operation that effected a consumer comfort level. To address this challenge, we propose a more proper method, in which all the three parameters are calculated using ALP that overlaps with DR time, not the total daily profile. Furthermore, evaluation of our method using two public residential electricity consumption data sets, i.e., REDD and REFIT, shows that our energy management systems (EMS) could properly match a DR target. A more optimal selection of appliances for the DR event achieves a power consumption decreasing target with minimum comfort level reduction. We believe that our approach could prevent the loss of both utility and consumers. It helps the successful automated DR deployment by maintaining the consumers' willingness to participate in the program.

Flat Transformer 코아의 설계와 컨버터 동작 특성 (Study on designing of Flat Transformer and operating characteristics of Converter)

  • 한세원;조한구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.587-590
    • /
    • 2003
  • The first attention in designing a transformer for low temperature rise should be to reduce losses. Leakage inductance and temperature rise are two of the more impotent problems facing the magnetic core technology of today's high frequency transformers. Excessive leakage inductance increases the stress on the switching transistors and limits the duty-cycle, and excessive temperature rise can lead the design limitation of high frequency transformer with high current. The flat transformer technology provides a very good solution to the problems of leakage inductance and thermal management for high frequency power. The critical magnetic components and windings are optimized and packaged within a completely assembled module. The turns ratio in a flat transformer is determined as the product of the number of elements or modules times the number of primary turns. The leakage inductance increase proportionately to the number of elements, but since it is reduced as the square of the turns, the net reduction can be very significant. The flat transformer modules use cores which have no gap. This eliminates fringing fluxes and stray flux outside of the core. The secondary windings are formed of flat metal and are bonded to the inside surface of the core. The secondary winding thus surrounds the primary winding, so nearly all of the flux is captured.

  • PDF

합성가스 스파크점화 과급 엔진에서 희박 연소를 통한 열효율 및 배기 개선 (Improvement of Thermal Efficiency and Emission by Lean Combustion in a Boosted Spark-Ignition Engine Fueled with Syngas)

  • 박현욱;이준순;나랑후 잠스랑;오승묵;김창업;이용규;강건용
    • 한국분무공학회지
    • /
    • 제26권1호
    • /
    • pp.40-48
    • /
    • 2021
  • Lean combustion was applied to improve the thermal efficiency and emission in a single-cylinder, spark-ignition engine fueled with syngas. Under naturally aspirated conditions, the lean combustion significantly improved the thermal efficiency compared to the stoichiometric combustion, mainly due to the reduction in heat transfer loss. Intake air boost was applied to compensate the low power output of the lean combustion. The gross indicated power of 24.8 kW was achieved by increasing the intake pressure up to 1.6 bar at excess air ratio of 2.2. The nitrogen oxides showed near zero level, but the carbon monoxide emission was significant.