• 제목/요약/키워드: Power loss reduction

검색결과 435건 처리시간 0.029초

The Study on Miniaturization and Weight Reduction of Auxiliary Power Unit in Magnetic Levitation Train

  • Lee, Na Ri;Shin, Hee Keun;Choi, Sung Ho;Kim, Ju Bum;Lim, Jae Won;Park, Doh Young;Mok, Hyung Soo
    • International Journal of Railway
    • /
    • 제8권1호
    • /
    • pp.10-14
    • /
    • 2015
  • Due to the characteristics of the vehicle structure, the magnetic levitation train has a confined bottom space thus a study on miniaturization and weight reduction of auxiliary power unit is essential. This auxiliary power unit is an essential device used for illumination, air conditioning, heating and air brake equipment excluding the motor. The previous auxiliary power unit for magnetic levitation train has used the hard switching having a high switching frequency with heavy loss in order to reduce the size of filter reactor and transformer but the reduction in volume was not significant. In this paper, by reducing the loss, reducing the size of the cooling unit and by increasing the switching frequency using the soft switching of resonant converter, it has miniaturized and reduced the weight of filter reactor and transformer which occupy significant space in the auxiliary power unit. This study has verified the performance of 50KVA grade prototype through simulated interpretation and analysis, and compared the size and weight of auxiliary power unit of the previous magnetic levitation train.

Schottky Body Diode를 집적하여 향상된 Reverse Recovery 특성을 가지는 50V Power MOSFET (50V Power MOSFET with Improved Reverse Recovery Characteristics Using an Integrated Schottky Body Diode)

  • 이병화;조두형;김광수
    • 전기전자학회논문지
    • /
    • 제19권1호
    • /
    • pp.94-100
    • /
    • 2015
  • 본 논문에서는 U-MOSFET 내부의 기생 body 다이오드(PN diode)를 쇼트키 body 다이오드(Schottky body diode)로 대체한 50V급 전력 U-MOSFET을 제안하였다. 쇼트키 다이오드는 PN 다이오드와 비교 시, 역 회복 손실(reverse recovery loss)을 감소시킬 수 있는 장점을 가지고 있다. 따라서 전력 MOSFET의 기생 body 다이오드를 쇼트키 body 다이오드를 대신함으로써 역 회복 손실을 최소화 할 수 있다. 제안된 쇼트키 body 다이오드(Schottky body diode) U-MOSFET(SU-MOS)를 conventional U-MOSFET(CU-MOS)와 전기적 특성을 비교한 결과, 전달(transfer) 및 출력(output)특성, 항복(breakdown)전압 등 정적(static) 특성의 변화 없이 감소된 역 회복 손실을 얻을 수 있었다. 즉, 쇼트키 다이오드의 폭(width)이 $0.2{\mu}m$, 쇼트키 장벽 높이(Schottky barrier height)가 0.8eV일 때 첨두 역전류(peak reverse current)는 21.09%, 역 회복 시간(reverse recovery time)은 7.68% 감소하였고, 성능지수(figure of merit(FOM))는 35% 향상되었다. 제안된 소자의 특성은 Synopsys사의 Sentaurus TCAD를 사용하여 분석되었다.

역삼투 담수시스템용 에너지회수장치의 손실극복 메커니즘 설계 (Design of Loss-reduction Mechanisms for Energy Recovery Devices in Reverse-osmosis Desalination systems)

  • 함영복;김영;노종호;신석신;박종호
    • 동력기계공학회지
    • /
    • 제16권3호
    • /
    • pp.5-9
    • /
    • 2012
  • Novel mechanisms for Energy Recovery Devices are proposed to diminish the pressure loss in the high-pressure reverse-osmosis system. In the beginning, the state-of-the-art in the design of Energy Recovery Devices is reviewed and the features of each model are investigated. The direct-coupled axial piston pump(APP) and axial piston motor(APM) showed 39% energy recovery at operating pressure of reverse osmosis desalination systems, 60 bar. Meanwhile, the developed PM2D model, in which APM pistons are arranged parallel to those of APP, is more compact and showed higher efficiency in a preliminary test. Loss-reduction mechanisms employing rod piston and double raw valve port are additionally proposed to enhance the efficiency and durability of the device.

냉장고 가스켓 형상 변화에 따른 냉장고 열손실 저감 효과 (The Effect on Heat Loss Reduction in a refrigeration with the Variation of Gasket Shape)

  • 하지수;정광수;김태권;김경호;정관식;김석로
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.286-291
    • /
    • 2008
  • Insulation of refrigerator with gasket material near door becomes the technical point at the aspect of heat loss and energy efficiency. Heat loss of refrigerator through the gasket is nearly 30%. In this paper, quantitative evaluation method of heat loss through gasket in established suggest the method for the improvement of heat loss. To analyze the heat transfer, we have used the common software Fluent that is used to CFD. Because of using the convection coefficient of heat transfer, we have solved only the equation of energy for heat transfer. As a result, we have known that heat loss flows through the heat flux vector and that the heat gathered out of the outside iron plate is transferred inner part through the gasket and ABS, etc. Through the result of the numerical simulation that use sub-gasket, we have known that we are able to reduce the heat loss about $20{\sim}40%$. when we applied that sub-gasket on a real refrigerator, the power consumption had reduced about 4.76%. In addition, when we applied a more improved sub-gasket on a real refrigerator and measured the power of the refrigerator the power consumption does reduce about 3% and we will try to apply the improved sub-gasket on a new models of refrigerator.

  • PDF

PV moudule의 출력손실 저감요인 분석 (A Study for reduction of the power loss of PV modules)

  • 이상훈;강기환;유권종;안형근;한득영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.45-50
    • /
    • 2011
  • The efficiency of solar cell was about 4[%] in initial stage of photovoltaic industry, but it has quite a lot of efficiency through technology advances. Today, the efficiency of c-Si solar cells is about 17 to 19[%] and the efficiency of PV modules is about 14 to 15 [%]. We called that electrical losses occurred in the Conversion of solar cells to PV modules are CTM loss(Cell To Module loss), the CTM loss typically has a value of about3~5[%]. The more efficiency of solar cell increase, differences are larger because the efficiency decrease owing to physical or technical problems occurred in the Conversion of solar cells to PV modules. In this study, the power loss factors occurred in the Conversion of solar cells to PV modules are analyzed and it is proposed that how to reduce losses of the PV module. The types of power loss factor are (1)losses of front glass and encapsulant(generally EVA sheet), (2)losses by sorting miss, (3)losses by interconnection, (4)losses by the field aging of PV modules. In further study, experimental and evaluation will be conducted to make demonstrate for proposed solutions.

  • PDF

PV모듈 제조공정에서 Interconnection에 따른 전기적 손실 특성 분석 (The Analysis of electrical loss characteristics by interconnection during PV module fabrication process)

  • 이진섭;강기환;박지홍;유권종;안형근;한득영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.216-217
    • /
    • 2007
  • In this study, we analyzed the electrical loss characteristics between ribbon and output terminal of constituent material according to electrical resistance during interconnection process of PV module. From this result, the electrical output power reduction rate caused by interaction between ribbon and cell's interconnection was 2.88%. There was 1W electrical output power reduction through the 16 solar cells. So it is expected that the wider size of PV module gives the higher loss in electricity production. Also, the average output power of PV module passed lamination process was increased by 0.081W per one solar cell and the increase rate was 3.7%.PV module's electrical loss before and after lamination process according to constituent material's terminal was 0.49W and 0.50W, respectively.

  • PDF

신뢰도지수를 고려한 배전계통시스템의 최적전력전송경로 결정 (Optimal Routing of Distribution Networks Considering Reliability Indices)

  • 노병권;김진오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.915-917
    • /
    • 1998
  • Optimal routing of distribution networks can be attained by keeping the line power capacity limit to handle load requirements, acceptable voltage at customer loads, and the reliability indices such as SAIFI, SAIDI, CAIDI, and ASAI limits. This method is composed of optimal loss reduction and optimal reliability cost reduction. The former is solved relating to the conductor resistance of all alternative routes, and the latter is solved relating to the failure rate and duration of each alternative route. The routing considering optimal loss only and both optimal loss and optimal reliability cost are compared in this paper. The results showed that reliability cost should be considered as well as loss reduction to achieve the optimal routing in the distribution networks.

  • PDF

이상소음 해소를 위한 Stack 소음저감 기술개발 (Technology Development of Noise Reduction at Stack for Resolution of Abnormal Noise)

  • 호경찬;이영제;김성진;권혁관;정현일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1049-1052
    • /
    • 2006
  • Object of this study is to develop an Stack Silencer System for quieting abnormal noise around power plant. Abnormal noise gets resident people to feel uncomfortable. Stack Silencer System is to minimize pressure loss of exhaust gas and to maximize noise reduction effect from abnormal noise frequency band. Stack Silencer System is installation in stack and absorbing material is an aluminum foam. Reduction effect measures insertion loss of $8.2{\sim}19.4dB$ by Stack silencer installation. After Stack Silencer System installation, pressure loss of exhaust gas measured $5{\sim}9mmH_2O$.

  • PDF

Loss Minimization Control for Induction Generators in Wind Power Systems Using Support Vector Regression

  • Abo-Khalil, Ahmed G.;Lee, Dong-Choon
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.344-346
    • /
    • 2006
  • In this paper, a novel algorithm for increasing the steady state efficiency during light load operation of the induction generator that integrated with a wind power generation system is presented. The proposed algorithm based on the flux level reduction, where the flux level is estimated using Support-Vector -Machines for regression (SVR) for the optimum d-axis current of the generator. SVR is trained off-line to estimate the unknown mapping between the system's inputs and outputs, and then is used online to calculate the optimum d-axis current for minimizing generator loss. The experimental results show that SVR can define the flux-power loss accurately and determine the optimum d-axis current value precisely. The loss minimization process is more effective at low wind speed and the percent of power saving can approach to 40%.

  • PDF

인버터의 손실저감을 위한 소프트 스위칭기법 (A Soft switching method for Loss reduction of Inverter)

  • 곽동걸;김영철;이현우
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(5)
    • /
    • pp.249-252
    • /
    • 2001
  • A large number of soft switching topologies included a resonant circuit have been proposed. But these circuits increase number of switch in circuit and complicate sequence of switching operation. In this Paper, the authors propose power conversion system, DC-AC inverter of high efficiency and high power factor with soft switching mode by partial resonant method. The result is that the switching loss is very low and the efficiency of system is high. And the snubber condenser used in partial resonant circuit makes charging energy regenerated at input power source for resonant operation.

  • PDF