• Title/Summary/Keyword: Power limit

Search Result 1,455, Processing Time 0.025 seconds

A Test for Multivariate Normality Focused on Elliptical Symmetry Using Mahalanobis Distances

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1191-1200
    • /
    • 2006
  • A chi-squared test of multivariate normality is suggested which is mainly focused on detecting deviations from elliptical symmetry. This test uses Mahalanobis distances of observations to have some power for deviations from multivariate normality. We derive the limiting distribution of the test statistic by a conditional limit theorem. A simulation study is conducted to study the accuracy of the limiting distribution in finite samples. Finally, we compare the power of our method with those of other popular tests of multivariate normality under two non-normal distributions.

  • PDF

REFINEMENT PERMUTATIONS OF PRIME POWER ORDER

  • Park, Dong-Wan;Jo, Young-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.1
    • /
    • pp.59-69
    • /
    • 2000
  • For a permutation ${\mu}$ in S$\sub$b/, the limit algebra A${\mu}$ of the stationary system given by ${\mu}$ is isomorphic to a refinement limit algebra if and only if its exponent set E(${\mu}$) is the set {0}. In the current paper, we prove a sufficient condition under which E(${\mu}$)={0} when the order of ${\mu}$ is a power of p, where p is a prime number dividing b.

  • PDF

A Test for Multivariate Normality Focused on Elliptical Symmetry Using Mahalanobis Distances

  • Park, Cheol-Yong
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.203-212
    • /
    • 2006
  • A chi-squared test of multivariate normality is suggested which is mainly focused on detecting deviations from elliptical symmetry. This test uses Mahalanobis distances of observations to have some power for deviations from multivariate normality. We derive the limiting distribution of the test statistic by a conditional limit theorem. A simulation study is conducted to study the accuracy of the limiting distribution in finite samples. Finally, we compare the power of our method with those of other popular tests of multivariate normality under two non-normal distributions.

  • PDF

A Study on the Limit Capacity Calculation for Thermal plant based on Air Pollution Control (대기오염에 따른 화력발전소의 한계용량산전에 관한 연구)

  • Yim Han Suck
    • 전기의세계
    • /
    • v.26 no.2
    • /
    • pp.95-98
    • /
    • 1977
  • Commercially available fuel oil for power plant contains relatively much sulphur, which means accordingly high content sulphur deoxide in exhaust gas. Sulphur deoxide has been identified as the worst-pollutant caused by thermal power generation. This paper primarily deals with the stack gas diffusion effects of various parameters, namely vertical stability, wind velocity, exhaust gas velocity, stack height, etc., on the ground concentration. thereof the relation between stack height and maximum plant capacity is analyzed from the standpoint of air pollution prevention. The limit capacity is calculated by means of mean concentration introducing Mead and Lowry coefficient respectively.

  • PDF

Enhancement of Power System Transient Stability and Power Quality Using a Novel Solid-state Fault Current Limiter

  • Fereidouni, A.R.;Vahidi, B.;Mehr, T. Hoseini;Doiran, M. Garmroodi
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.474-483
    • /
    • 2011
  • Solid-state fault current limiters (SSFCL) in power systems are alternative devices to limit prospective short circuit currents from reaching lower levels. Fault current limiters (FCL) can be classified into two categories: R-type (resistive) FCLs and L-type (inductive) FCLs. L-type FCL uses an inductor to limit fault level and is more efficient in suppressing voltage drop during a fault. In contrast, R-type FCL is constructed with a resistance and is more effective in consuming the acceleration energy of generators during a fault. Both functions enhance the transient stability of the power system. In the present paper, a novel SSFCL is proposed to enhance power system transient stability and power quality. The proposed SSFCL uses both functions of an L-type and R-type FCL. SSFCL consists of four diodes, one self-turn-off IGCT, a current-limiting by-pass inductor (L), and a variable resistance parallel with an inductor for improvement of power system stability and prevention of over-voltage across SSFCL. The main advantages of the proposed SSFCL are the simplicity of its structure and control, low steady-state impedance, fast response, and the existence of R-type and Ltype impedances during the fault, all of which improve power system stability and power quality. Simulations are accomplished in PSCAD/EMTDC.

Analysis and Design of the In-Rush Current Protection Circuit for SSPA Power Supply (SSPA용 전원공급기의 돌입전류 보호회로 분석 및 설계)

  • Park, Sang-Hyun;Park, Dong-Chul;Kim, Dae-Kwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.5-11
    • /
    • 2008
  • Recently developed radars use the solid-state power amplifier to amplify the RF signal. The stability of RF signal directly depends on that of the electric power. So the stable and reliable electric power should be needed. When the electric power switch is tuned on for the first time in order to operate the radar system, the in-rush current is generated because of the capacitive characteristic. The excess in-rush current breaks the element. Therefore, the analysis about the in-rush current to design the electric power system is necessary. In this paper, modeling and simulation on the whole power system is carried out and the necessity of limiting the in-rush current is verified. After the analysis, the circuit to limit the in-rush current is designed and examined to verify the analysis. The circuit is good enough to limit the in-rush current.

Analysis of effect on power system considering the maximum penetration limit of wind power (풍력발전 한계운전용량에 대한 계통영향 분석)

  • Myung, Ho-San;Kim, Bong-Eon;Kim, Hyeong-Taek;Kim, Se-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.19-25
    • /
    • 2012
  • About supply and demand to see that you need to match, the limitations of wind power capacity is low demand and the commitment of the general generator will exist between the minimum generation. if the turbine's output can be controlled, The limitation of wind power capacity will be adopted based on instant power generation. Namely, The minimum limits of wind power generation based load operation by calculating the amount that is higher than if the output should be restricted to highest operation. in this paper, we committed to the demand for low enough that the combination of the general generator of wind power capacity to accommodate the operation of determining whether the limit is intended to. For this, power system analysis program PSS/E was used, Jeju system by implementing the model simulations were performed.

Design of HTS power cable with fault current limiting function

  • Kim, Dongmin;Kim, Sungkyu;Cho, Jeonwook;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.7-11
    • /
    • 2020
  • As demand for electricity in urban areas increases, it is necessary to improve electric power stability by interconnecting neighboring substations and high temperature superconductor (HTS) power cables are considered as a promising option due to its large power capacity. However, the interconnection of substations reduces grid impedance and expected fault current is over 45 kA, which exceeds the capacity of a circuit breaker in Korean grid. To reduce the fault current below 45 kA, a HTS power cable having a fault current limiting (FCL) function is considered by as a feasible solution for the interconnection of substations. In this study, a FCL HTS power cable of 600 MVA/154 kV, transmission level class, is considered to reduce the fault current from 63 kA to less than 45 kA by generating an impedance over 1 Ωwhen the fault current is induced. For the thermal design of FCL HTS power cable, a parametric study is conducted to meet a required temperature limit and impedance by modifying the cable core from usual HTS power cables which are designed to bypass the fault current through cable former. The analysis results give a minimum cable length and an area of stainless steel former to suppress the temperature of cable below a design limit.

Detection Limit of a NaI(Tl) Survey Meter to Measure 131I Accumulation in Thyroid Glands of Children after a Nuclear Power Plant Accident

  • Takahiro Kitajima;Michiaki Kai
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.3
    • /
    • pp.131-143
    • /
    • 2023
  • Background: This study examined the detection limit of thyroid screening monitoring conducted at the time of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in 2011 using a Monte Carlo simulation. Materials and Methods: We calculated the detection limit of a NaI(Tl) survey meter to measure 131I accumulation in the thyroid gland of children. Mathematical phantoms of 1- and 5-year-old children were developed in the simulation of the Particle and Heavy Ion Transport code System code. Contamination of the body surface with eight radionuclides found after the FDNPP accident was assumed to have been deposited on the neck and shoulder area. Results and Discussion: The detection limit was calculated as a function of ambient dose rate. In the case of 40 Bq/cm2 contamination on the body surface of the neck, the present simulations showed that residual thyroid radioactivity corresponding to thyroid dose of 100 mSv can be detected within 21 days after intake at the ambient dose rate of 0.2 µSv/hr and within 11 days in the case of 2.0 µSv/hr. When a time constant of 10 seconds was used at the dose rate of 0.2 µSv/hr, the estimated survey meter output error was 5%. Evaluation of the effect of individual differences in the location of the thyroid gland confirmed that the measured value would decrease by approximately 6% for a height difference of ±1 cm and increase by approximately 65% for a depth of 1 cm. Conclusion: In the event of a nuclear disaster, simple measurements carried out using a NaI(Tl) scintillation survey meter remain effective for assessing 131I intake. However, it should be noted that the presence of short-half-life radioactive materials on the body surface affects the detection limit.

A mechanistic analysis of H2O and CO2 diluent effect on hydrogen flammability limit considering flame extinction mechanism

  • Jeon, Joongoo;Kim, Yeon Soo;Jung, Hoichul;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3286-3297
    • /
    • 2021
  • The released hydrogen can be ignited even with weak ignition sources. This emphasizes the importance of the hydrogen flammability evaluation to prevent catastrophic failure in hydrogen related facilities including a nuclear power plant. Historically numerous attempts have been made to determine the flammability limit of hydrogen mixtures including several diluents. However, no analytical model has been developed to accurately predict the limit concentration for mixtures containing radiating gases. In this study, the effect of H2O and CO2 on flammability limit was investigated through a numerical simulation of lean limit hydrogen flames. The previous flammability limit model was improved based on the mechanistic investigation, with which the amount of indirect radiation heat loss could be estimated by the optically thin approximation. As a result, the sharp increase in limit concentration by H2O could be explained by high thermal diffusivity and radiation rate. Despite the high radiation rate, however, CO2 with the lower thermal diffusivity than the threshold cannot produce a noticeable increase in heat loss and ultimately limit concentration. We concluded that the proposed mechanistic analysis successfully explained the experimental results even including radiating gases. The accuracy of the improved model was verified through several flammability experiments for H2-air-diluent.