Browse > Article
http://dx.doi.org/10.1016/j.net.2021.05.004

A mechanistic analysis of H2O and CO2 diluent effect on hydrogen flammability limit considering flame extinction mechanism  

Jeon, Joongoo (Department of Nuclear Engineering, Hanyang University)
Kim, Yeon Soo (Department of Nuclear Engineering, Hanyang University)
Jung, Hoichul (Department of Nuclear Engineering, Hanyang University)
Kim, Sung Joong (Department of Nuclear Engineering, Hanyang University)
Publication Information
Nuclear Engineering and Technology / v.53, no.10, 2021 , pp. 3286-3297 More about this Journal
Abstract
The released hydrogen can be ignited even with weak ignition sources. This emphasizes the importance of the hydrogen flammability evaluation to prevent catastrophic failure in hydrogen related facilities including a nuclear power plant. Historically numerous attempts have been made to determine the flammability limit of hydrogen mixtures including several diluents. However, no analytical model has been developed to accurately predict the limit concentration for mixtures containing radiating gases. In this study, the effect of H2O and CO2 on flammability limit was investigated through a numerical simulation of lean limit hydrogen flames. The previous flammability limit model was improved based on the mechanistic investigation, with which the amount of indirect radiation heat loss could be estimated by the optically thin approximation. As a result, the sharp increase in limit concentration by H2O could be explained by high thermal diffusivity and radiation rate. Despite the high radiation rate, however, CO2 with the lower thermal diffusivity than the threshold cannot produce a noticeable increase in heat loss and ultimately limit concentration. We concluded that the proposed mechanistic analysis successfully explained the experimental results even including radiating gases. The accuracy of the improved model was verified through several flammability experiments for H2-air-diluent.
Keywords
Flammability limit; Radiating gas; Indirect radiation; Extinction mechanism; Hydrogen safety;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 C. Law, F. Egolfopoulos, A unified chain-thermal theory of fundamental flammability limits, Symp. (Int.) Combust. 24 (1) (1992) 137-144.
2 K. Lakshmisha, P. Paul, H. Mukunda, On the flammability limit and heat loss in flames with detailed chemistry, Symp. (Int.) Combust. 23 (1) (1991) 433-440.
3 S.R. Turns, An Introduction to Combustion, third ed., McGraw-Hill, New York, 1996, pp. 293-300.
4 S. Zheng, R. Sui, Y. Yang, Y. Sun, H. Zhou, Q. Lu, An improved full-spectrum correlated-k-distribution model for non-gray radiative heat transfer in combustion gas mixtures, Int. Commun. Heat Mass 114 (2020), 104566.   DOI
5 R. Seigel, J.R. Howell, Thermal Radiation Heat Transfer, McGraw-Hil, New York, 1981, p. 836.
6 D. Fernandez-Galisteo, A. S anchez, A. Linan, F. Williams, The hydrogen-air burning rate near the lean flammability limit, Combust. Theor. Model. 13 (4) (2009) 741-761.   DOI
7 M.G. Plys, Hydrogen production and combustion in severe reactor accidents: an integral assessment perspective, Nucl. Technol. 101 (1993) 400-410.   DOI
8 Z. Wei, C. Leung, C. Cheung, Z. Huang, Effects of H2 and CO2 addition on the heat transfer characteristics of laminar premixed biogasehydrogen Bunsen flame, Int. J. Heat Mass Tran. 98 (2016) 359-366.   DOI
9 J. Jeon, Y.S. Kim, W. Choi, S.J. Kim, Identification of Hydrogen Flammability in steam generator compartment of OPR1000 using MELCOR and CFX codes, Nucl. Eng. Technol. 51 (2019) 1939-1950.   DOI
10 Y.S. Kim, J. Jeon, C.H. Song, S.J. Kim, Improved prediction model for H2/CO combustion risk using a calculated non-adiabatic flame temperature model, Nucl. Eng. Technol. 52 (12) (2020) 2836-2846.   DOI
11 J. Kim, U. Lee, S.W. Hong, S.B. Kim, H.D. Kim, Spray effect on the behavior of hydrogen during severe accidents by a loss-of-coolant in the APR1400 containment, Int. Commun. Heat Mass 33 (10) (2006) 1207-1216.   DOI
12 G. Shu, B. Long, H. Tian, H. Wei, X. Liang, Flame temperature theory-based model for evaluation of the flammable zones of hydrocarbon-air-CO2 mixtures, J. Hazard Mater. 294 (2015) 137-144.   DOI
13 J. Jeon, D. Shin, W. Choi, S.J. Kim, Identification of the extinction mechanism of lean limit hydrogen flames based on recirculation heat transfer, Int. J. Heat Mass Tran. 174 (2021), 121288.   DOI
14 Y. Ju, H. Guo, K. Maruta, F. Liu, On the extinction limit and flammability limit of non-adiabatic stretched methaneeair premixed flames, J. Fluid Mech. 342 (1997) 315-334.   DOI
15 H.F. Coward, G.W. Jones, Limits of Flammability of Gases and Vapors, Bureau of Mines, Washington DC, 1952.
16 V.J. Mascarenhas, C.N. Weber, P.R. Westmoreland, Estimating flammability limits through predicting non-adiabatic laminar flame properties, Proc. Combust. Inst. 38 (2021) 4673-4681.   DOI
17 A.L. S anchez, E. Fern andez-Tarrazo, P. Boivin, A. Lin~an, F.A. Williams, Ignition time of hydrogeneair diffusion flames, Compt. Rendus Mec. 340 (2012) 882-893.   DOI
18 B. Bregeon, A.S. Gordon, F.A. Williams, Near-limit downward propagation of hydrogen and methane flames in oxygen nitrogen mixtures, Combust. Flame 33 (1978) 33-45.   DOI
19 I. Yakovenko, M. Ivanov, A. Kiverin, K. Melnikova, Large-scale flame structures in ultra-lean hydrogen-air mixtures, Int. J. Hydrogen Energy 43 (3) (2018) 1894-1901.   DOI
20 J.H. Lee, M. Berman, Hydrogen combustion and its application to nuclear reactor safety, Adv. Heat Tran. 29 (1997) 59-127.   DOI
21 N.K. Kim, J. Jeon, W. Choi, S.J. Kim, Systematic hydrogen risk analysis of OPR1000 containment before RPV failure under station blackout scenario, Ann. Nucl. Energy 116 (2018) 429-438.   DOI
22 J. Jeon, S.J. Kim, Recent progress in hydrogen flammability prediction for the safe energy systems, Energies 13 (23) (2020) 6263.   DOI
23 H.J. Liaw, K.Y. Chen, A model for predicting temperature effect on flammability limits, Fuel 178 (2016) 179-187.   DOI
24 Y. Shoshin, L. De Goey, Experimental study of lean flammability limits of methane/hydrogen/air mixtures in tubes of different diameters, Exp. Therm. Fluid Sci. 34 (3) (2010) 373-380.   DOI
25 J. Jeon, W. Choi, S.J. Kim, A flammability limit model for hydrogen-air-diluent mixtures based on heat transfer characteristics in flame propagation, Nucl. Eng. Technol. 51 (2019) 1749-1757.   DOI
26 Z. Zhou, Y. Shoshin, F.E. Hern andez-Perez, J.A. van Oijen, L.P. de Goey, Experimental and numerical study of cap-like lean limit flames in H2-CH4-air mixtures, Combust. Flame 189 (2018) 212-224.   DOI
27 A.C. Egerton, J. Powling, The limits of flame propagation at atmospheric pressure II. The influence of changes in the physical properties, Proc. Royal Soc. A 193 (1033) (1948) 190-209.
28 M. Vidal, W. Wong, W. Rogers, M.S. Mannan, Evaluation of lower flammability limits of fueleairediluent mixtures using calculated adiabatic flame temperatures, J. Hazard Mater. 130 (1) (2006) 21-27.   DOI
29 F. Zhao, W.J. Rogers, M.S. Mannan, Calculated flame temperature (CFT) modeling of fuel mixture lower flammability limits, J. Hazard Mater. 174 (1-3) (2010) 416-423.   DOI
30 E. Fern andez-Tarrazo, A.L. Sanchez, A. Linan, F.A. Williams, Flammability conditions for ultra-lean hydrogen premixed combustion based on flame-ball analyses, Int. J. Hydrogen Energy 37 (2) (2012) 1813-1825.   DOI
31 M. Wu, G. Shu, R. Chen, H. Tian, X. Wang, Y. Wang, A new model based on adiabatic flame temperature for evaluation of the upper flammable limit of alkane-air-CO2 mixtures, J. Hazard Mater. 344 (2018) 450-457.   DOI
32 A. Bentaib, N. Meynet, A. Bleyer, Overview on hydrogen risk research and development activities: methodology and open issues, Nucl. Eng. Technol. 47 (1) (2015) 26-32.   DOI
33 P. Nikolaidis, A. Poullikkas, A comparative overview of hydrogen production processes, Renew. Sustain. Energy Rev. 67 (2017) 597-611.   DOI
34 M.G. Zabetakis, Flammability Characteristics of Combustible Gases and Vapors, Bureau of Mines, Washington DC, 1965.
35 A.L. Sanchez, F.A. Williams, Recent advances in understanding of flammability characteristics of hydrogen, Prog. Energy Combust. 41 (2014) 1-55.   DOI
36 Y. Dong, A.T. Holley, M.G. Andac, F.N. Egolfopoulos, S.G. Davies, P. Middha, H. Wang, Extinction of premixed H2/air flames: chemical kinetics and molecular diffusion effects, Combust. Flame 142 (4) (2005) 374-387.   DOI
37 M. Terpstra, Flammability Limits of Hydrogen-Diluent Mixtures in Air, MSc thesis, University of Calgary, 2012.
38 R. Kumar, Flammability limits of hydrogen-oxygen-diluent mixtures, J. Fire Sci. 3 (4) (1985) 245-262.   DOI
39 Y. Shoshin, L. Tecce, J. Jarosinski, Experimental and computational study of lean limit methane-air flame propagating upward in a 24 mm diameter tube, Combust. Sci. Technol. 180 (10-11) (2008) 1812-1828.   DOI
40 Z. Zhou, Y. Shoshin, F.E. Hernandez-Perez, J.A. van Oijen, L.P. de Goey, Effect of Lewis number on ball-like lean limit flames, Combust. Flame 188 (2018) 77-89.   DOI
41 B.W. Marshall, Hydrogen:air: Steam Flammability Limits and Combustion Characteristics in the FITS Vessel, Sandia National Laboratories, Albuquerque, 1986.
42 H. Bordbar, G.C. Fraga, S. Hostikka, An extended weighted-sum-of-gray-gases model to account for all CO2-H2O molar fraction ratios in thermal radiation, Int. Commun. Heat Mass 110 (2020), 104400.   DOI
43 F.E. Hernandez-P erez, B. Oostenrijk, Y. Shoshin, J.A. van Oijen, L.P. de Goey, Formation, prediction and analysis of stationary and stable ball-like flames at ultra-lean and normal-gravity conditions, Combust. Flame 162 (4) (2015) 932-943.   DOI
44 Y. Shoshin, J. Jarosinski, On extinction mechanism of lean limit methane-air flame in a standard flammability tube, Proc. Combust. Inst. 32 (1) (2009) 1043-1050.   DOI
45 J. Jarosinski, R. Strehlow, A. Azarbarzin, The mechanisms of lean limit extinguishment of an upward and downward propagating flame in a standard flammability tube, Symp. (Int.) Combust. 19 (1) (1982) 1549-1557.
46 A.R. Tajik, P. Kuntikana, S.V. Prabhu, V. Hindasageri, Effect of preheated mixture on heat transfer characteristics of impinging methaneeair premixed flame jet, Int. J. Heat Mass Tran. 86 (2015) 550-562.   DOI
47 G. Krishnamoorthy, A new weighted-sum-of-gray-gases model for CO2-H2O gas mixtures, Int. Commun. Heat Mass 37 (9) (2010) 1182-1186.   DOI
48 E. Mayer, A theory of flame propagation limits due to heat loss, Combust. Flame 1 (4) (1957) 438-452.   DOI
49 J. Jeon, H. Jung, Y.S. Kim, S.J. Kim, Numerical Study of Lean Limit Hydrogen Flames Propagating Upward to Validate a Flammability Limit Model, NURETH-18, Portland, 2019, pp. 4362-4371.
50 V.V. Volodin, V.V. Golub, A.D. Kiverin, K.S. Melnikova, A.Y. Mikushkin, I.S. Yakovenko, Large-scale dynamics of ultra-lean hydrogen-air flame kernels in terrestrial gravity conditions, Combust. Sci. Technol. 193 (2) (2021) 225-234.   DOI