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REFINEMENT PERMUTATIONS
OF PRIME POWER ORDER

DoNnGwAN PArRK AND YOUNG So0 Jo

ABSTRACT. For a permutation p in Sp, the limit algebra A, of the
stationary system given by p is isomorphic to a refinement limit alge-
bra if and only if its exponent set E(u) is the set {0}. In the current
paper, we prove a sufficient condition under which E(u) = {0} when
the order of u is a power of p, where p is a prime number dividing b.

1. Introduction

For a positive integer b, let [b] denote the set {0,1,2,...,b— 1} and
let u € Sp be a permutation on [b], of order d. Let ¢4 : Z — [d] be
the canonical surjection. Recall that the ezponent set of u is defined as
follows:

El(ﬂ) = [d] = {Oa1a2>--'ad_ 1},

and
Eji1(p) = {¢a(z — p'(z) + bt) | = € [b],t € E;(w)},

for j = 1,2,---. It follows that E1(p) O Ea(u) 2 F3(u) 2 ..., and
that, once two successive F;(u) are equal, all subsequent ones are also
‘equal. Since Ej(u) contains only d elements, stabilization occurs no later
than at E4(u). We write E(u) = E4(p) and call it the exponent set of
p. Obviously, 0 € E;(u), for all 7, and thus 0 € E(u). We say u has a
trivial exponent set if E(u) = {0}.

Let us recollect some terminologies related to a homogeneous direct
system of matrix algebras. Define U, to be the permutation unitary ma-
trix whose ¢, j-entry is 1 if and only if u(j) = ¢. Then the unitary matrix
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U, defines a homogeneous embedding v, : T, — Tnp, by the formula
vu(ai;) = (aizU}7"). Such an embedding gives rise to a direct system,
called a stationary homogeneous system, of upper triangular subalgebras
of full matrix algebras in which each embedding is the homogeneous
embedding v, induced by a fixed permutation p in Sp:

(1) Ty 25 Ty 25 Tps =2 -+ — A,

If p is the identity permutation in Sp, then v, is the refinement embed-
ding, and the limit algebra A, in (1) is called the refinement algebra,
which is denoted by A,. Not rarely a permutation p distinct from the
identity can give the limit algebra A, which is (isomorphic to) the re-
finement algebra. Such a permutation is sometimes called a refinement
permutation.

A natural question arises here: For a fixed base b, which permutations
in Sp are the refinement permutations?

Hopenwasser and Peters ([2]) showed the exponent set E(u) gives
a complete characterization of those permutations for which A, is a
refinement algebra. Here are a few results of Hopenwasser and Peters,
which we utilize in the later sections.

LEMMA 1.1 ([2]). Let u be a permutation in Sy with order d. Suppose
E(u) = {0}. Then d divides a power of b.

THEOREM 1.2 ([2]). Let u € Sy and let A, be the limit algebra
of the stationary system of nest embeddings associated with u. A, is
(isomorphic to) a refinement algebra A,, if and only if E(u) = {0}.

However, for a given permutation y, to determine whether A, is a
refinement algebra, it is an interesting approach to examine the permu-
tation p itself without a series of tedious computations of the exponent
set F(u). In the current paper, our special interest goes to the per-
mutations of order a power of a prime number. Theorem 3.1 gives the
sufficient conditions for a permutation of prime power order to have a
trivial exponent set. The converses for a few specific cases are given in
Theorem 3.7 and Theorem 3.10.



Refinement permutations of prime power order 61

2. Trivial Exponent Sets

Let p be a permutation in S;. By R,, we denote the set of the
members of [b] which are not fixed by p. That is,

R, ={zet] | o— () # 0},

LEMMA 2.1. Let u € Sy and 0 € S, be the permutations of order
d such that R, = R,, p(z) = o(x) for x € R,. Then ¢4(b) = ¢4(c)
implies E(u) = E(0).

PROOF. Suppose that ¢4(b) = ¢4(c). It is obvious that Ey(u) = [d] =
E1(0). Proceeding by induction, we assume that E,,(¢) = En, (o) holds
for some m > 1. We have

Epnii(p) = {da(z — p™(z) +bn) | 2 € [b],n € En(u)}
= {¢pa(z — p"(z)) + da(b)da(n) | = € [b],n € Epm(p)}
= {¢pa(z — 1" (z)) + a(b)da(n) | z € Ru,n € Ern(p)}
U {¢a(z — p"(z)) + a(b)da(n) | = ¢ Ru,n € Enn(u)}
= {¢a(z — p"(2)) + pa(b)¢a(n) | T € Ry,n € Ep(p)}
U {@a(b)da(n) | n € Em(n)}-

Similarly,

Epni1(0) = {¢a(z — o™ (z) + cn) | z € [c],n € Ep(0)}
= {¢a(z — 0™ (x)) + da(c)pa(n) | x € Ry,n € Em(0)}
U {¢a(c)pa(n) | n € En(0)}.

Since u(z) = o(z) for £ € R, = Ry, it follows that pu"(z) = 0"(x) for
any nonnegative integer n. Thus, by equating every pair of correspond-
ing objects, we have E,,11(1) = Emnt1(0). So, by induction, we have
En(p) = En (o) for every m > 1. In particular, E(u) = E(0). O

With Lemma 2.1, in a practical computation of E(u) for a permuta-
tion u of order d in Sy, we may take b as small as possible, provided that
u € Sp and the number ¢4(b) remains unchanged.

LEMMA 2.2. Let u be a permutation of order d in Sy, where d divides
a power of b. If ¢p4(x — u(x)) =0 for all x € R, then E(u) = {0}.
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PROOF. Assume ¢4(z — p(z)) = 0 for all z € R,. Let d divide b* for
some k > 1. Then

Ea(p) = {¢a(x — p"(z) + bn) | z € [b],n € Ey(u)}.

For any z € R, and for any n € E1(u), either p"(x) € R, or x is a fixed
point of ™. Thus ¢4(z — u™(x)) = 0. Therefore

Ea(p) = {¢a(bn) | n € Er(p)}.

E3(p) = {pa(z — p"(z) +bn) | z € [b],n € E2(n)}
= {¢a(bn) | n € Ez(p)}
= {¢a(bpa(bn)) | n € Er(p)}
= {¢a(b°n) | n € Ea(u)}.

Repeating, we have

Bir1(n) = {¢a(0*n) | n € Er(p) = [d]}-
Since d divides b*, Ex.1(u) = {0}. Therefore E(u) = {0}. g

If z is a fixed point of u, then it is always true that ¢4(z — pu(x)) = 0.
So, the condition ¢4(z — p(x)) = 0 holds for all z € R, if and only if it
holds for all z € [b]. We will mention R, instead of [b] to emphasize the
permutation y itself. Also note that, for a cycle u, ¢q(x — p(z)) = 0 for

all z € R, if and only if ¢4(xz — y) = 0 for any two elements x and y of
R,.

The converse of Lemma 2.2 need not be true in general:
Let © = (0246)(1357) be a permutation in Sg. Then E(u) = {0},
but ¢a(z — p(z)) # 0 for any x € R,,.

THEOREM 2.3 ([3]). Let p be a prime number, and u be a permu-
tation of order p in Sy, where p divides b. E(u) = {0} if and only if
¢p(x — pu(x)) =0 forallz € R,.
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PROOF. By Lemma 2.2, it suffices to prove that if E(u) = {0}, then
¢p(x — p(x)) = 0 for all z € R,,. Suppose that there exists yo € R, such
that ¢, (yo—#(yo)) # 0. Obviously, E1(u) = [p] # {0}. Assume Ep, () #
{0} for some m > 1. Then there exists a nonzero t € E,,,(u). Since p is
a prime number and E,,,(1) C [p], t is relatively prime to p. Therefore
R,: = Ry, and thus there exists zg € R, such that ¢,(zo — p*(zo)) # 0.
Indeed, if ¢pp(z — pi(z)) = 0 for all x € Ry, then, since t is relatively
prime to p, ¢pp(xz —y) = 0 for all z,y € R,,:. Regarding yo and p(yo) as
elements of R, we have ¢,(yo — p(y0)) = 0 contradictory to the choice
of yo. Since ¢p(zo — ' (z0)) € Em+1(p), we have En,1(pn) # {0}. Thus,
by induction, E,,(x) # {0} for all m. In particular, E(u) # {0}. 0

THEOREM 2.4 ([3]). Let m = uo, where . and o are disjoint permu-

tations in Sy.
IfA, = A,, then A, = A, and A, = A,.

The converse fails: Let 4 = (0 3 6) and ¢ = (1 5) in Si2. Then
E(u) = E(o) = {0}, by Theorem 2.3. But E(uo) = {0,2,3,4}.

COROLLARY 2.5. Let m = mymy--- 7T, be a product of disjoint per-

mutations in Sy.
If A = A,, then Ap, = A, for each 1.

Here is a partial converse of Theorem 2.4.

THEOREM 2.6 ([3]). Let u,o be disjoint cycles in Sy of order p,q,
respectively, where p and q are distinct prime numbers both dividing b.

Let m = po. Suppose E(u) = {0} and E(c) = {0}. Then E(rn) = {0} if
and only if at least one of the following conditions holds:

(¢) ¢pg(z — pu(z)) =0, for allz € R,
(it) ¢pp(z —o(x)) =0, for allz € R,.

If A, is a refinement algebra, Lemma 2.1 can be much enhanced:

LEMMA 2.7. Let u € S, and 0 € S. be permutations of order d
dividing both a power of b and a power of ¢, R, = R, and p(z) = o(x)
for x € R,,. Assume both b and c have the same supernatural number.
Then E(u) = {0} if and only if E(o) = {0}.
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ProoF. By Power ([10]), a refinement algebra in S, is isomorphic to
a refinement algebra in S. if and only if both b and ¢ have the same
supernatural number. Thus if this refinement algebra is arising from a
permutation, then its exponent set must be {0}. O

3. Refinement Permutations of Order p"

In the previous section, we have introduced some known results on the
refinement permutations. Let u be a refinement permutation in Sp. If
the order of 4 has the prime factorization p7*p3® - - - p.*, then, by Lemma
1.1, each p; necessarily divides b. The simplest form of such order is p”,
where p is a prime number which divides b. We now prove the main
result of the current section:

THEOREM 3.1. Let p be a permutation of order p" in Sy, where p
is a prime number which divides b. If ¢,;(z — p?’ " (z)) = 0 for every
T € Ry, and for each j = 1,2,...,n, then E(u) = {0}.

PrOOF. We may assume, by Lemma 2.7, that p™ divide b so that we
can drop the term + bt in the computation of the exponent sets. To find
out the exponent set of u, we start with

El()u’) = [pn],
Ey(p) = {¢pn(z — p'(2)) | @ € [b],¢ € Er(w)}-

Since ¢,(z — p(z)) = 0 for all £ € R, with j = 1, we have ¢p(z —y) =0
for any pair z,y € R,. Hence for each t € E1(p),

$pdpr (z — 1'()) = Ppnp(z — p'(2)) = $pn (0) = 0.

Thus
E2(/~L) g pZ n [pn] = {07 b, 2p’ Tty (pn—l - 1)p}

Next, assume inductively that

Em(,U/) gpm-lzﬂ [pn] — {0’ pm—l, 2pm-—1, . (pn—m+1 _ l)pm_l},
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for m < n. Then

Em1(p) = {¢pn(z — (@) | @ € B],t € Em(m)}

-C—- {¢P"(w - ﬂ't(a")) | (S [b]7t = kpm_lak = Oa 17 e ,pn-—m+1 - 1}
Let z € [b], t = kp™~! with k = 0,1,--- ,p"~™*"! — 1. Since ¢pm(z —
pP" " (z)) = 0, we have

b (2 — 17" (2))

= ppm(z — " () + P (z) — P

m—1

z)+ = i (@)

m—1 (

k—1
= pm (> b (WP () — pUTVP T (2)))
j=0

= dpm (Ic_i‘j G (WP (@) =P (7 (@)
= 0. 0
Therefore
pm (dpn (€ — 1H(2))) = Gpn ($pm (z — p(2)))
= Gpn(dpm(z — 177 (2)))

= ¢pr (0)
= 0.

It follows that

Erni1(p) Sp"Z N Ep(p)
CpmZNp™'ZN[p"]
= p™Z N [p".

Thus E,,41(¢) C p™Z N [p"] for every m < n. In particular,
Eny1(p) Cp"Z 0 [p"] = {0}.
Therefore E(p) = {0}. O
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EXAMPLE 3.2. Let u = (03 6 9 12 15 18 21 24) be a permutation
in S3g. The order of pis 9 = p" with p = 3, n = 2. Since p® =
(09 18)(3 12 21)(6 15 24), it is obvious that the condition in Theorem
3.1 holds for p: ¢p(x—p(x)) = 0and ¢p2(x—pP(z)) = 0, for any x € R,.
Therefore the exponent set F(u) must be {0} by Theorem 3.1. Indeed
we have

El(,u') = {0, 1,2,3,4, 5a6:7:8}a
Es(w) = {0,3,6},
E3(u) = {0}

It seems that the condition in Theorem 3.1 is necessary for an expo-
nent set to be trivial. Here are a few suggestive examples.

ExXAMPLE 3.3. Let u = (1 359) be a permutation of order p” in Sjg
with p = 2, n = 2. Then the condition of Theorem 3.1 holds for j =1
while it fails for j = 2: ¢4(3 — 9) # 0. The exponent set is not trivial.
In fact, E(u) = {0,2}.

EXAMPLE 3.4. Let u= (0469 13 15 18 22 24) be a permutation in
So7 of order 32. Then the condition of Theorem 3.1 holds for j = 2, since
p® = (09 18)(4 13 22)(6 15 24). But it fails for j = 1: ¢3(0 — 4) # 0.
We have E(u) = {0,1,3,6,8}.

EXAMPLE 3.5. Let u = (0 2 4 6 8 10 12 18) be a cycle of order
23 in Ssp. Then the condition of Theorem 3.1 holds for j = 1 and
for ;7 = 2 while the condition fails for j = 3. The exponent set F(u)
is {0,4}. If 0 = (0 4 2 6 8 12 10 14), then the condition holds for
j = 1 and for j = 3 while it fails for j = 2. We have E(o) = {0,2,6}.
Now if 7 = (01 4589 12 13), then the condition is false only for
j = 1 while it is true for both 7 = 2 and 7 = 3. The exponent set is
E(r)=10,1,3,4,5,7}.

The exponent sets are symmetric in the following sense.

LEMMA 3.6 ({3]). Let p be a permutation of order d in Sy. Then
t € FEx(u) if and only if d —t € Ex(u), for each k > 1. In particular,
t € E(p) if and only ifd —t € E(u).
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PROOF. Since Ey(u) = [d], if t € E1(u), then d —t € Ey(p). We
proceed by induction. Let ¢ € Ej1(u) for some & > 1. Then there exist
z € [b] and s € Ey(u) such that

(2) ¢a(x — p’(z) + bs) =t¢.

Put y = p*(z). Negating both sides of (2) and using the facts that
p? = u® and ¢g(bd) = 0, we obtain:

(3) $aly — p**(y) + b(d —5)) =d — t.

Since y € [b] and d — s € Ey(u) by the induction hypothesis, (3) implies
d—t € Epy1(p). Thus we have proved that if t € Ex(u), thend —t €
Ex(p) for every k > 1. In particular, if ¢ € E(p), then d — t € E(u).
Since t = d — (d — t), the reverse implication follows. O

We now make use of Lemma 3.6 to prove the converse of Theorem 3.1
forp=2andn=2:

THEOREM 3.7 ([6]). Let u be a permutation of order 4 in S,, where
b is an even integer. If E(u) = {0}, then both (¢) ¢2(x — u(x)) = 0 and
(1) ¢a(z — p*(z)) = 0 hold for all z € R,,.

PROOF. We may assume, by Lemma 2.7, that b is divisible by 4.
Observe that every permutation of order 4 is the disjoint product of a
cycle of order 4 and cycles of order 4 and/or transpositions. In case a
transposition 7 occurs in the product, the condition (i) is always true
for all z € R, because the order of 7 is 2. Thus, by Theorem 2.4, we can
also assume that u is a cycle of order 4.

Let p = (m1 ma m3 my) be a cycle of order 4, with each m; € [b].
Suppose that ¢o(z — u(z)) # 0 for some z € R,,. With the cyclicity of
the cyclic notation, we may assume z = m; so that p(z) = u(m;) = mao,
and thus ¢o(m1 — ma) # 0 or ¢2(my1 — my) = 1. Thus we have either
$a(m1 —ma) = 1 or ¢4(m; — mg2) = 3. By Lemma 3.6, the symmetry of
the exponent sets, we observe that both 1 and 3 are contained in Esy ().
Taking z = m; and t = 1, we see that F3(u) contains ¢4(z — pi(z) =
¢4(my — mgp). That is, E3(u) contains both 1 and 3. Repeatedly taking
Z =my and t = 1, we have that every E)(u) contains 1 and 3, which is
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impossible because F(u) = {0}. Therefore the condition (i) must hold
for all z € R,,.

Now suppose ¢a(mi — m3) = ¢a(my — u?(m1)) # 0. Then, since
we already have ¢2(m; — mg) = 0, it must be @ga(m; — m3) = 2. It
follows that 2 € E3(u). Taking £ = m; and t = 2, we see that E3(u)
contains ¢4(z — pu*(z) = 2. Repeating this, we have 2 € E(u), another
contradiction. Therefore the condition (¢¢) must hold for all z € R,,. O

The condition (z) in Theorem 3.7 shows that the smallest possible
value of b for Sy to contain a refinement permutation of order 4 is 8.

EXAMPLE 3.8. There are 44 refinement permutations of order 4 out
of 43020 permutations in Sg, including

(0246),(0642),(1357),(0246)(1753),

(0246)(13),(1753)(06), (0246)(17)(35).

LEMMA 3.9. For a positive integer n, let u be a permutation of order
p" in Sp, and let there exist an element & of R, such that ¢,(z — u(z)) #
0. Ift € [p"|\pZ, then there exist s € [p"|\pZ and zo € R, such that
¢pn (To — uH(20)) = 5.

PROOF. Suppose to the contrary that ¢,-(z — u*(z)) = 0 for every
z € R,. Then, for j =1,2,3,--, ¢pn(z — pI'(2)) = dpn(z — pt(z) +
pi(z) — p?(z) + — - + pU-D¥z) — w(x)) = 0. Since p™ and ¢t are
relatively prime, for any fixed z, {¢/*(z) | j = 0,1,2,---} exhausts all
elements of R,. Thus ¢,-(z — y) = 0 for any pair of elements = and
y of R,. In particular, ¢pn(z — pu(zx)) = 0 for every x € R,, hence
¢p(z — pu(z)) = 0 for every z € R,,, which is a contradiction. Therefore
there exists zo € R, such that ¢,n(zg — p'(zg)) # 0.

Let s = ¢pn (xo — pt(x0)). It remains to show that zo can be chosen so
that ¢,(s) # 0. Suppose that ¢,(s) = ¢,(¢pn(z — pt(x))) = 0 for every
z € R,,. Then ¢pn(dp(x — p*(x))) = 0. Thus ¢,(z — p¥(z)) is a multiple
of p™ which is less than p. That is, ¢,(z — u*(x)) = 0 for every z € R,,.
Since ¢ is relatively prime to p, we have ¢,(z —y) = 0 for any pair of
elements z and y of R,,. Hence ¢,(x— u(x)) = 0 for every z € R, which
is another contradiction. (]

Now we prove a partial converse of Theorem 3.1.
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THEOREM 3.10. Let u be a permutation of order p™ in Sy, where p
is a prime number dividing b. If E(u) = {0}, then ¢,(z — p(z)) = 0 for
every r € R,.

PROOF. Assume that p™ divides b. Suppose that ¢,(xzo — pu(xg)) # 0
for some zo € R,, that is, ¢p(zo — u(zo)) € {1,2,--- ,p — 1}. Then
¢pn(To — (o)) € [P"]\PZ. Let t = ¢pn(z0 — p(x0)). By Lemma 3.9,
there exist z; € R, and s € [p"]\pZ such that ¢pn(z1 — p’(z1)) = s.
This means that if 0 # ¢ € Ex(u) for some k& > 1, then 0 # s € Exq1(p)-
Since s € [p"]\pZ, Lemma 3.9 applies repeatedly. Thus Ex(pn) # {0}
implies Ex+1(p) # {0} for every k > 1. It follows that E(u) # {0}. O
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