REFINEMENT PERMUTATIONS OF PRIME POWER ORDER

Dongwan Park and Young Soo Jo

ABSTRACT. For a permutation μ in S_b , the limit algebra A_μ of the stationary system given by μ is isomorphic to a refinement limit algebra if and only if its exponent set $E(\mu)$ is the set $\{0\}$. In the current paper, we prove a sufficient condition under which $E(\mu) = \{0\}$ when the order of μ is a power of p, where p is a prime number dividing b.

1. Introduction

For a positive integer b, let [b] denote the set $\{0, 1, 2, \ldots, b-1\}$ and let $\mu \in S_b$ be a permutation on [b], of order d. Let $\phi_d : \mathbf{Z} \longrightarrow [d]$ be the canonical surjection. Recall that the *exponent set* of μ is defined as follows:

$$E_1(\mu) = [d] = \{0, 1, 2, \dots, d-1\},\$$

and

$$E_{j+1}(\mu) = \{ \phi_d(x - \mu^t(x) + bt) \mid x \in [b], t \in E_j(\mu) \},\$$

for $j=1,2,\cdots$. It follows that $E_1(\mu)\supseteq E_2(\mu)\supseteq E_3(\mu)\supseteq \ldots$, and that, once two successive $E_j(\mu)$ are equal, all subsequent ones are also equal. Since $E_1(\mu)$ contains only d elements, stabilization occurs no later than at $E_d(\mu)$. We write $E(\mu)=E_d(\mu)$ and call it the exponent set of μ . Obviously, $0\in E_j(\mu)$, for all j, and thus $0\in E(\mu)$. We say μ has a trivial exponent set if $E(\mu)=\{0\}$.

Let us recollect some terminologies related to a homogeneous direct system of matrix algebras. Define U_{μ} to be the permutation unitary matrix whose i, j-entry is 1 if and only if $\mu(j) = i$. Then the unitary matrix

Received July 8, 1999. Revised September 1, 1999.

¹⁹⁹¹ Mathematics Subject Classification: 47D25, 46H35, 46L89.

Key words and phrases: stationary system, limit algebra, permutation.

This paper was supported by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1996.

 U_{μ} defines a homogeneous embedding $\nu_{\mu}: T_n \longrightarrow T_{nb}$, by the formula $\nu_{\mu}(a_{ij}) = (a_{ij}U_{\mu}^{j-i})$. Such an embedding gives rise to a direct system, called a stationary homogeneous system, of upper triangular subalgebras of full matrix algebras in which each embedding is the homogeneous embedding ν_{μ} induced by a fixed permutation μ in S_b :

$$(1) T_b \xrightarrow{\nu_{\mu}} T_{b^2} \xrightarrow{\nu_{\mu}} T_{b^3} \xrightarrow{\nu_{\mu}} \cdots \longrightarrow A_{\mu}.$$

If μ is the identity permutation in S_b , then ν_{μ} is the refinement embedding, and the limit algebra A_{μ} in (1) is called the refinement algebra, which is denoted by A_o . Not rarely a permutation μ distinct from the identity can give the limit algebra A_{μ} which is (isomorphic to) the refinement algebra. Such a permutation is sometimes called a refinement permutation.

A natural question arises here: For a fixed base b, which permutations in S_b are the refinement permutations?

Hopenwasser and Peters ([2]) showed the exponent set $E(\mu)$ gives a complete characterization of those permutations for which A_{μ} is a refinement algebra. Here are a few results of Hopenwasser and Peters, which we utilize in the later sections.

LEMMA 1.1 ([2]). Let μ be a permutation in S_b with order d. Suppose $E(\mu) = \{0\}$. Then d divides a power of b.

THEOREM 1.2 ([2]). Let $\mu \in S_b$ and let A_μ be the limit algebra of the stationary system of nest embeddings associated with μ . A_μ is (isomorphic to) a refinement algebra A_μ if and only if $E(\mu) = \{0\}$.

However, for a given permutation μ , to determine whether A_{μ} is a refinement algebra, it is an interesting approach to examine the permutation μ itself without a series of tedious computations of the exponent set $E(\mu)$. In the current paper, our special interest goes to the permutations of order a power of a prime number. Theorem 3.1 gives the sufficient conditions for a permutation of prime power order to have a trivial exponent set. The converses for a few specific cases are given in Theorem 3.7 and Theorem 3.10.

2. Trivial Exponent Sets

Let μ be a permutation in S_b . By R_{μ} , we denote the set of the members of [b] which are not fixed by μ . That is,

$$R_{\mu} = \{x \in [b] \mid x - \mu(x) \neq 0\}.$$

LEMMA 2.1. Let $\mu \in S_b$ and $\sigma \in S_c$ be the permutations of order d such that $R_{\mu} = R_{\sigma}$, $\mu(x) = \sigma(x)$ for $x \in R_{\mu}$. Then $\phi_d(b) = \phi_d(c)$ implies $E(\mu) = E(\sigma)$.

PROOF. Suppose that $\phi_d(b) = \phi_d(c)$. It is obvious that $E_1(\mu) = [d] = E_1(\sigma)$. Proceeding by induction, we assume that $E_m(\mu) = E_m(\sigma)$ holds for some $m \geq 1$. We have

$$E_{m+1}(\mu) = \{ \phi_d(x - \mu^n(x) + bn) \mid x \in [b], n \in E_m(\mu) \}$$

$$= \{ \phi_d(x - \mu^n(x)) + \phi_d(b)\phi_d(n) \mid x \in [b], n \in E_m(\mu) \}$$

$$= \{ \phi_d(x - \mu^n(x)) + \phi_d(b)\phi_d(n) \mid x \in R_\mu, n \in E_m(\mu) \}$$

$$\cup \{ \phi_d(x - \mu^n(x)) + \phi_d(b)\phi_d(n) \mid x \notin R_\mu, n \in E_m(\mu) \}$$

$$= \{ \phi_d(x - \mu^n(x)) + \phi_d(b)\phi_d(n) \mid x \in R_\mu, n \in E_m(\mu) \}$$

$$\cup \{ \phi_d(b)\phi_d(n) \mid n \in E_m(\mu) \}.$$

Similarly,

$$E_{m+1}(\sigma) = \{ \phi_d(x - \sigma^n(x) + cn) \mid x \in [c], n \in E_m(\sigma) \}$$

= \{ \phi_d(x - \sigma^n(x)) + \phi_d(c)\phi_d(n) \ \ | x \in R_\sigma, n \in E_m(\sigma) \}.
\cup \{ \phi_d(c)\phi_d(n) \ \ | n \in E_m(\sigma) \}.

Since $\mu(x) = \sigma(x)$ for $x \in R_{\mu} = R_{\sigma}$, it follows that $\mu^{n}(x) = \sigma^{n}(x)$ for any nonnegative integer n. Thus, by equating every pair of corresponding objects, we have $E_{m+1}(\mu) = E_{m+1}(\sigma)$. So, by induction, we have $E_{m}(\mu) = E_{m}(\sigma)$ for every $m \geq 1$. In particular, $E(\mu) = E(\sigma)$.

With Lemma 2.1, in a practical computation of $E(\mu)$ for a permutation μ of order d in S_b , we may take b as small as possible, provided that $\mu \in S_b$ and the number $\phi_d(b)$ remains unchanged.

LEMMA 2.2. Let μ be a permutation of order d in S_b , where d divides a power of b. If $\phi_d(x - \mu(x)) = 0$ for all $x \in R_\mu$, then $E(\mu) = \{0\}$.

PROOF. Assume $\phi_d(x - \mu(x)) = 0$ for all $x \in R_{\mu}$. Let d divide b^k for some $k \ge 1$. Then

$$E_1(\mu) = [d],$$

 $E_2(\mu) = \{\phi_d(x - \mu^n(x) + bn) \mid x \in [b], n \in E_1(\mu)\}.$

For any $x \in R_{\mu}$ and for any $n \in E_1(\mu)$, either $\mu^n(x) \in R_{\mu}$ or x is a fixed point of μ^n . Thus $\phi_d(x - \mu^n(x)) = 0$. Therefore

$$E_2(\mu) = \{ \phi_d(bn) \mid n \in E_1(\mu) \}.$$

$$E_3(\mu) = \{ \phi_d(x - \mu^n(x) + bn) \mid x \in [b], n \in E_2(\mu) \}$$

$$= \{ \phi_d(bn) \mid n \in E_2(\mu) \}$$

$$= \{ \phi_d(b\phi_d(bn)) \mid n \in E_1(\mu) \}$$

$$= \{ \phi_d(b^2n) \mid n \in E_1(\mu) \}.$$

Repeating, we have

$$E_{k+1}(\mu) = \{ \phi_d(b^k n) \mid n \in E_1(\mu) = [d] \}.$$

Since d divides b^k , $E_{k+1}(\mu) = \{0\}$. Therefore $E(\mu) = \{0\}$.

If x is a fixed point of μ , then it is always true that $\phi_d(x-\mu(x))=0$. So, the condition $\phi_d(x-\mu(x))=0$ holds for all $x\in R_\mu$ if and only if it holds for all $x\in [b]$. We will mention R_μ instead of [b] to emphasize the permutation μ itself. Also note that, for a cycle μ , $\phi_d(x-\mu(x))=0$ for all $x\in R_\mu$ if and only if $\phi_d(x-y)=0$ for any two elements x and y of R_μ .

The converse of Lemma 2.2 need not be true in general:

Let $\mu = (0\ 2\ 4\ 6)(1\ 3\ 5\ 7)$ be a permutation in S_8 . Then $E(\mu) = \{0\}$, but $\phi_4(x - \mu(x)) \neq 0$ for any $x \in R_{\mu}$.

THEOREM 2.3 ([3]). Let p be a prime number, and μ be a permutation of order p in S_b , where p divides b. $E(\mu) = \{0\}$ if and only if $\phi_p(x - \mu(x)) = 0$ for all $x \in R_\mu$.

PROOF. By Lemma 2.2, it suffices to prove that if $E(\mu) = \{0\}$, then $\phi_p(x-\mu(x)) = 0$ for all $x \in R_\mu$. Suppose that there exists $y_0 \in R_\mu$ such that $\phi_p(y_0-\mu(y_0)) \neq 0$. Obviously, $E_1(\mu) = [p] \neq \{0\}$. Assume $E_m(\mu) \neq \{0\}$ for some $m \geq 1$. Then there exists a nonzero $t \in E_m(\mu)$. Since p is a prime number and $E_m(\mu) \subseteq [p]$, t is relatively prime to p. Therefore $R_{\mu^t} = R_\mu$, and thus there exists $x_0 \in R_\mu$ such that $\phi_p(x_0 - \mu^t(x_0)) \neq 0$. Indeed, if $\phi_p(x - \mu^t(x)) = 0$ for all $x \in R_{\mu^t}$, then, since t is relatively prime to p, $\phi_p(x - y) = 0$ for all $x, y \in R_{\mu^t}$. Regarding y_0 and $\mu(y_0)$ as elements of R_{μ^t} , we have $\phi_p(y_0 - \mu(y_0)) = 0$ contradictory to the choice of y_0 . Since $\phi_p(x_0 - \mu^t(x_0)) \in E_{m+1}(\mu)$, we have $E_{m+1}(\mu) \neq \{0\}$. Thus, by induction, $E_m(\mu) \neq \{0\}$ for all m. In particular, $E(\mu) \neq \{0\}$.

THEOREM 2.4 ([3]). Let $\pi = \mu \sigma$, where μ and σ are disjoint permutations in S_b .

If $A_{\pi} \cong A_o$, then $A_{\mu} \cong A_o$ and $A_{\sigma} \cong A_o$.

The converse fails: Let $\mu = (0\ 3\ 6)$ and $\sigma = (1\ 5)$ in S_{12} . Then $E(\mu) = E(\sigma) = \{0\}$, by Theorem 2.3. But $E(\mu\sigma) = \{0, 2, 3, 4\}$.

COROLLARY 2.5. Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a product of disjoint permutations in S_b .

If $A_{\pi} \cong A_o$, then $A_{\pi_i} \cong A_o$ for each i.

Here is a partial converse of Theorem 2.4.

THEOREM 2.6 ([3]). Let μ, σ be disjoint cycles in S_b of order p, q, respectively, where p and q are distinct prime numbers both dividing b. Let $\pi = \mu \sigma$. Suppose $E(\mu) = \{0\}$ and $E(\sigma) = \{0\}$. Then $E(\pi) = \{0\}$ if and only if at least one of the following conditions holds:

(i)
$$\phi_q(x - \mu(x)) = 0$$
, for all $x \in R_\mu$,

(ii)
$$\phi_p(x - \sigma(x)) = 0$$
, for all $x \in R_\sigma$.

If A_{μ} is a refinement algebra, Lemma 2.1 can be much enhanced:

LEMMA 2.7. Let $\mu \in S_b$ and $\sigma \in S_c$ be permutations of order d dividing both a power of b and a power of c, $R_{\mu} = R_{\sigma}$ and $\mu(x) = \sigma(x)$ for $x \in R_{\mu}$. Assume both b and c have the same supernatural number. Then $E(\mu) = \{0\}$ if and only if $E(\sigma) = \{0\}$.

PROOF. By Power ([10]), a refinement algebra in S_b is isomorphic to a refinement algebra in S_c if and only if both b and c have the same supernatural number. Thus if this refinement algebra is arising from a permutation, then its exponent set must be $\{0\}$.

3. Refinement Permutations of Order p^n

In the previous section, we have introduced some known results on the refinement permutations. Let μ be a refinement permutation in S_b . If the order of μ has the prime factorization $p_1^{n_1}p_2^{n_2}\cdots p_k^{n_k}$, then, by Lemma 1.1, each p_i necessarily divides b. The simplest form of such order is p^n , where p is a prime number which divides b. We now prove the main result of the current section:

THEOREM 3.1. Let μ be a permutation of order p^n in S_b , where p is a prime number which divides b. If $\phi_{p^j}(x-\mu^{p^{j-1}}(x))=0$ for every $x \in R_{\mu}$, and for each $j=1,2,\ldots,n$, then $E(\mu)=\{0\}$.

PROOF. We may assume, by Lemma 2.7, that p^n divide b so that we can drop the term +bt in the computation of the exponent sets. To find out the exponent set of μ , we start with

$$E_1(\mu) = [p^n],$$

$$E_2(\mu) = \{\phi_{v^n}(x - \mu^t(x)) \mid x \in [b], t \in E_1(\mu)\}.$$

Since $\phi_p(x-\mu(x))=0$ for all $x\in R_\mu$ with j=1, we have $\phi_p(x-y)=0$ for any pair $x,y\in R_\mu$. Hence for each $t\in E_1(\mu)$,

$$\phi_p \phi_{p^n}(x - \mu^t(x)) = \phi_{p^n} \phi_p(x - \mu^t(x)) = \phi_{p^n}(0) = 0.$$

Thus

$$E_2(\mu) \subseteq p\mathbf{Z} \cap [p^n] = \{0, p, 2p, \dots, (p^{n-1} - 1)p\}.$$

Next, assume inductively that

$$E_m(\mu) \subseteq p^{m-1}\mathbf{Z} \cap [p^n] = \{0, p^{m-1}, 2p^{m-1}, \cdots, (p^{n-m+1}-1)p^{m-1}\},$$

for $m \leq n$. Then

$$E_{m+1}(\mu) = \{ \phi_{p^n}(x - \mu^t(x)) \mid x \in [b], t \in E_m(\mu) \}$$

$$\subseteq \{ \phi_{p^n}(x - \mu^t(x)) \mid x \in [b], t = kp^{m-1}, k = 0, 1, \dots, p^{n-m+1} - 1 \}.$$

Let $x \in [b]$, $t = kp^{m-1}$ with $k = 0, 1, \dots, p^{n-m+1} - 1$. Since $\phi_{p^m}(x - \mu^{p^{m-1}}(x)) = 0$, we have

$$\begin{split} &\phi_{p^m}(x-\mu^{kp^{m-1}}(x))\\ &=\phi_{p^m}(x-\mu^{p^{m-1}}(x)+\mu^{p^{m-1}}(x)-\mu^{2p^{m-1}}(x)+\cdots-\mu^{kp^{m-1}}(x))\\ &=\phi_{p^m}(\sum_{j=0}^{k-1}\phi_{p^m}(\mu^{jp^{m-1}}(x)-\mu^{(j+1)p^{m-1}}(x)))\\ &=\phi_{p^m}(\sum_{j=0}^{k-1}\phi_{p^m}(\mu^{jp^{m-1}}(x)-\mu^{p^{m-1}}(\mu^{jp^{m-1}}(x))))\\ &=0. \end{split}$$

Therefore

$$\phi_{p^m}(\phi_{p^n}(x - \mu^t(x))) = \phi_{p^n}(\phi_{p^m}(x - \mu^t(x)))$$

$$= \phi_{p^n}(\phi_{p^m}(x - \mu^{kp^{m-1}}(x)))$$

$$= \phi_{p^n}(0)$$

$$= 0.$$

It follows that

$$E_{m+1}(\mu) \subseteq p^m \mathbf{Z} \cap E_m(\mu)$$

$$\subseteq p^m \mathbf{Z} \cap p^{m-1} \mathbf{Z} \cap [p^n]$$

$$= p^m \mathbf{Z} \cap [p^n].$$

Thus $E_{m+1}(\mu) \subseteq p^m \mathbf{Z} \cap [p^n]$ for every $m \leq n$. In particular,

$$E_{n+1}(\mu) \subseteq p^n \mathbf{Z} \cap [p^n] = \{0\}.$$

Therefore $E(\mu) = \{0\}.$

EXAMPLE 3.2. Let $\mu=(0\ 3\ 6\ 9\ 12\ 15\ 18\ 21\ 24)$ be a permutation in S_{30} . The order of μ is $9=p^n$ with $p=3,\ n=2$. Since $\mu^3=(0\ 9\ 18)(3\ 12\ 21)(6\ 15\ 24)$, it is obvious that the condition in Theorem 3.1 holds for μ : $\phi_p(x-\mu(x))=0$ and $\phi_{p^2}(x-\mu^p(x))=0$, for any $x\in R_\mu$. Therefore the exponent set $E(\mu)$ must be $\{0\}$ by Theorem 3.1. Indeed we have

$$E_1(\mu) = \{0, 1, 2, 3, 4, 5, 6, 7, 8\},$$

 $E_2(\mu) = \{0, 3, 6\},$
 $E_3(\mu) = \{0\}.$

It seems that the condition in Theorem 3.1 is necessary for an exponent set to be trivial. Here are a few suggestive examples.

EXAMPLE 3.3. Let $\mu = (1 \ 3 \ 5 \ 9)$ be a permutation of order p^n in S_{10} with p = 2, n = 2. Then the condition of Theorem 3.1 holds for j = 1 while it fails for j = 2: $\phi_4(3-9) \neq 0$. The exponent set is not trivial. In fact, $E(\mu) = \{0, 2\}$.

EXAMPLE 3.4. Let $\mu = (0\ 4\ 6\ 9\ 13\ 15\ 18\ 22\ 24)$ be a permutation in S_{27} of order 3^2 . Then the condition of Theorem 3.1 holds for j=2, since $\mu^3 = (0\ 9\ 18)(4\ 13\ 22)(6\ 15\ 24)$. But it fails for j=1: $\phi_3(0-4) \neq 0$. We have $E(\mu) = \{0,1,3,6,8\}$.

EXAMPLE 3.5. Let $\mu=(0\ 2\ 4\ 6\ 8\ 10\ 12\ 18)$ be a cycle of order 2^3 in S_{20} . Then the condition of Theorem 3.1 holds for j=1 and for j=2 while the condition fails for j=3. The exponent set $E(\mu)$ is $\{0,4\}$. If $\sigma=(0\ 4\ 2\ 6\ 8\ 12\ 10\ 14)$, then the condition holds for j=1 and for j=3 while it fails for j=2. We have $E(\sigma)=\{0,2,6\}$. Now if $\tau=(0\ 1\ 4\ 5\ 8\ 9\ 12\ 13)$, then the condition is false only for j=1 while it is true for both j=2 and j=3. The exponent set is $E(\tau)=\{0,1,3,4,5,7\}$.

The exponent sets are *symmetric* in the following sense.

LEMMA 3.6 ([3]). Let μ be a permutation of order d in S_b . Then $t \in E_k(\mu)$ if and only if $d - t \in E_k(\mu)$, for each $k \geq 1$. In particular, $t \in E(\mu)$ if and only if $d - t \in E(\mu)$.

PROOF. Since $E_1(\mu) = [d]$, if $t \in E_1(\mu)$, then $d - t \in E_1(\mu)$. We proceed by induction. Let $t \in E_{k+1}(\mu)$ for some $k \ge 1$. Then there exist $x \in [b]$ and $s \in E_k(\mu)$ such that

(2)
$$\phi_d(x - \mu^s(x) + bs) = t.$$

Put $y = \mu^s(x)$. Negating both sides of (2) and using the facts that $\mu^d = \mu^0$ and $\phi_d(bd) = 0$, we obtain:

(3)
$$\phi_d(y - \mu^{d-s}(y) + b(d-s)) = d - t.$$

Since $y \in [b]$ and $d-s \in E_k(\mu)$ by the induction hypothesis, (3) implies $d-t \in E_{k+1}(\mu)$. Thus we have proved that if $t \in E_k(\mu)$, then $d-t \in E_k(\mu)$ for every $k \geq 1$. In particular, if $t \in E(\mu)$, then $d-t \in E(\mu)$. Since t = d - (d-t), the reverse implication follows.

We now make use of Lemma 3.6 to prove the converse of Theorem 3.1 for p=2 and n=2:

THEOREM 3.7 ([6]). Let μ be a permutation of order 4 in S_b , where b is an even integer. If $E(\mu) = \{0\}$, then both (i) $\phi_2(x - \mu(x)) = 0$ and (ii) $\phi_4(x - \mu^2(x)) = 0$ hold for all $x \in R_\mu$.

PROOF. We may assume, by Lemma 2.7, that b is divisible by 4. Observe that every permutation of order 4 is the disjoint product of a cycle of order 4 and cycles of order 4 and/or transpositions. In case a transposition τ occurs in the product, the condition (ii) is always true for all $x \in R_{\tau}$ because the order of τ is 2. Thus, by Theorem 2.4, we can also assume that μ is a cycle of order 4.

Let $\mu=(m_1\ m_2\ m_3\ m_4)$ be a cycle of order 4, with each $m_i\in [b]$. Suppose that $\phi_2(x-\mu(x))\neq 0$ for some $x\in R_\mu$. With the cyclicity of the cyclic notation, we may assume $x=m_1$ so that $\mu(x)=\mu(m_1)=m_2$, and thus $\phi_2(m_1-m_2)\neq 0$ or $\phi_2(m_1-m_2)=1$. Thus we have either $\phi_4(m_1-m_2)=1$ or $\phi_4(m_1-m_2)=3$. By Lemma 3.6, the symmetry of the exponent sets, we observe that both 1 and 3 are contained in $E_2(\mu)$. Taking $x=m_1$ and t=1, we see that $E_3(\mu)$ contains $\phi_4(x-\mu^t(x)=\phi_4(m_1-m_2)$. That is, $E_3(\mu)$ contains both 1 and 3. Repeatedly taking $x=m_1$ and t=1, we have that every $E_k(\mu)$ contains 1 and 3, which is

impossible because $E(\mu) = \{0\}$. Therefore the condition (i) must hold for all $x \in R_{\mu}$.

Now suppose $\phi_4(m_1-m_3)=\phi_4(m_1-\mu^2(m_1))\neq 0$. Then, since we already have $\phi_2(m_1-m_3)=0$, it must be $\phi_4(m_1-m_3)=2$. It follows that $2\in E_2(\mu)$. Taking $x=m_1$ and t=2, we see that $E_3(\mu)$ contains $\phi_4(x-\mu^t(x)=2)$. Repeating this, we have $2\in E(\mu)$, another contradiction. Therefore the condition (ii) must hold for all $x\in R_\mu$. \square

The condition (i) in Theorem 3.7 shows that the smallest possible value of b for S_b to contain a refinement permutation of order 4 is 8.

EXAMPLE 3.8. There are 44 refinement permutations of order 4 out of 43020 permutations in S_8 , including

```
(0\ 2\ 4\ 6),\ (0\ 6\ 4\ 2),\ (1\ 3\ 5\ 7),\ (0\ 2\ 4\ 6)(1\ 7\ 5\ 3),\ (0\ 2\ 4\ 6)(1\ 7)(3\ 5).
```

LEMMA 3.9. For a positive integer n, let μ be a permutation of order p^n in S_b , and let there exist an element x of R_{μ} such that $\phi_p(x-\mu(x)) \neq 0$. If $t \in [p^n] \backslash p\mathbf{Z}$, then there exist $s \in [p^n] \backslash p\mathbf{Z}$ and $x_0 \in R_{\mu}$ such that $\phi_{p^n}(x_0 - \mu^t(x_0)) = s$.

PROOF. Suppose to the contrary that $\phi_{p^n}(x-\mu^t(x))=0$ for every $x\in R_\mu$. Then, for $j=1,2,3,\cdots,$ $\phi_{p^n}(x-\mu^j(x))=\phi_{p^n}(x-\mu^t(x)+\mu^t(x)-\mu^{2t}(x)+\cdots+\mu^{(j-1)t}(x)-\mu^{jt}(x))=0$. Since p^n and t are relatively prime, for any fixed x, $\{\mu^{jt}(x)\mid j=0,1,2,\cdots\}$ exhausts all elements of R_μ . Thus $\phi_{p^n}(x-y)=0$ for any pair of elements x and y of R_μ . In particular, $\phi_{p^n}(x-\mu(x))=0$ for every $x\in R_\mu$, hence $\phi_p(x-\mu(x))=0$ for every $x\in R_\mu$, which is a contradiction. Therefore there exists $x_0\in R_\mu$ such that $\phi_{p^n}(x_0-\mu^t(x_0))\neq 0$.

Let $s = \phi_{p^n}(x_0 - \mu^t(x_0))$. It remains to show that x_0 can be chosen so that $\phi_p(s) \neq 0$. Suppose that $\phi_p(s) = \phi_p(\phi_{p^n}(x - \mu^t(x))) = 0$ for every $x \in R_\mu$. Then $\phi_{p^n}(\phi_p(x - \mu^t(x))) = 0$. Thus $\phi_p(x - \mu^t(x))$ is a multiple of p^n which is less than p. That is, $\phi_p(x - \mu^t(x)) = 0$ for every $x \in R_\mu$. Since t is relatively prime to p, we have $\phi_p(x - y) = 0$ for any pair of elements x and y of R_μ . Hence $\phi_p(x - \mu(x)) = 0$ for every $x \in R_\mu$, which is another contradiction.

Now we prove a partial converse of Theorem 3.1.

THEOREM 3.10. Let μ be a permutation of order p^n in S_b , where p is a prime number dividing b. If $E(\mu) = \{0\}$, then $\phi_p(x - \mu(x)) = 0$ for every $x \in R_{\mu}$.

PROOF. Assume that p^n divides b. Suppose that $\phi_p(x_0 - \mu(x_0)) \neq 0$ for some $x_0 \in R_\mu$, that is, $\phi_p(x_0 - \mu(x_0)) \in \{1, 2, \dots, p-1\}$. Then $\phi_{p^n}(x_0 - \mu(x_0)) \in [p^n] \backslash p\mathbf{Z}$. Let $t = \phi_{p^n}(x_0 - \mu(x_0))$. By Lemma 3.9, there exist $x_1 \in R_\mu$ and $s \in [p^n] \backslash p\mathbf{Z}$ such that $\phi_{p^n}(x_1 - \mu^t(x_1)) = s$. This means that if $0 \neq t \in E_k(\mu)$ for some $k \geq 1$, then $0 \neq s \in E_{k+1}(\mu)$. Since $s \in [p^n] \backslash p\mathbf{Z}$, Lemma 3.9 applies repeatedly. Thus $E_k(\mu) \neq \{0\}$ implies $E_{k+1}(\mu) \neq \{0\}$ for every $k \geq 1$. It follows that $E(\mu) \neq \{0\}$. \square

References

- [1] A. Hopenwasser, S. Power, Classification of Limits of Triangular Matrix Algebras, Proc. Edinburgh Math. Soc. 36 (1992), 107-121.
- [2] A. Hopenwasser, J. Peters, Full Nest Algebras, Illinois J. of Math. 38 (1994), 501-520.
- [3] D. Park, Limit algebras of stationary systems, Dissertation, Univ. of Alabama (1995).
- [4] _____, Refinement algebras arisen from stationary systems, Youngnam Math. J. 2 (1995), 115-130.
- [5] _____, Exponent tables and limit algebras of stationary systems, Korean J. Math. Sci. 3 (1996), 179-188.
- [6] ______, Permutations of prime square order with trivial exponent sets, KoreanJ. Math. Sci. 5 (1998), 229-237.
- [7] S. Power, The Classification of tensor products of triangular operator algebras, Proc. London Math. Soc. **61** (1990), 571-614.
- [8] _____, The Classification of triangular subalgebras of AF algebras, Bull. London Math. Soc. 22 (1990), 269-272.
- [9] _____, Non-self-adjoint operator algebras and inverse systems of simplicial complexes, J. Reine Angew. Math. 421 (1991), 43-61.
- [10] _____, Limit Algebras: An Introduction to Subalgebras of C*-algebras, Pitman Research Notes, Longman, 1992.

Department of Mathematics
Keimyung University
Taegu 704-701, Korea
E-mail: dpark@kmucc.keimyung.ac.kr
ysjo@kmucc.keimyung.ac.kr