• Title/Summary/Keyword: Power inverter

Search Result 3,963, Processing Time 0.034 seconds

A 5.3GHz wideband low-noise amplifier for subsampling direct conversion receivers (서브샘플링 직접변환 수신기용 5.3GHz 광대역 저잡음 증폭기)

  • Park, Jeong-Min;Seo, Mi-Kyung;Yun, Ji-Sook;Choi, Boo-Young;Han, Jung-Won;Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.12
    • /
    • pp.77-84
    • /
    • 2007
  • In this parer, a wideband low-noise amplifier (LNA) has been realized in a 0.18mm CMOS technology for the applications of subsampling direct-conversion RF receivers. By exploiting the inverter-type transimpedance input stage with a 3rd-order Chebyshev matching network, the wideband LNA demonstrates the measured results of the -3dB bandwidth of 5.35GHz, the power gain (S21) of $12\sim18dB$, the noise figure (NF) of $6.9\sim10.8dB$, and the broadband input/output impedance matching of less than -10dB/-24dB within the bandwidth, respectively. The chip dissipates 32.4mW from a single 1.8V supply, and occupies the area of $0.56\times1.0mm^2$.

Adaptive FNN Controller for Maximum Torque of IPMSM Drive (IPMSM 드라이브의 최대토크를 위한 적응 FNN 제어기)

  • Kim, Do-Yeon;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Byung-Jin;Park, Ki-Tae;Choi, Jung-Hoon;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.313-318
    • /
    • 2007
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes maximum torque control of IPMSM drive using adaptive fuzzy neural network controller and artificial neural network(ANN). This control method is applicable over the entire speed range which considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using Adaptive-FNN controller and ANN controller. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper reposes speed control of IPMSM using Adaptive-FNN and estimation of speed using ANN controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is a lied to IPMSM drive system controlled Adaptive-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the Adaptive-FNN and ANN controller.

  • PDF

Modeling and Characteristics of PDA CCFL Driving Circuits for Piezoelectric Transformer (압전 트랜스포머를 이용한 PDA용 CCFL구동회로의 모델링과 동작특성)

  • Hwang L.H.;Jang E.S.;Nam W.Y.;Yoo J.H.;Oh D.O.;Cho M.T.;Ahn I.S;Joo H. J
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.279-282
    • /
    • 2003
  • In this paper, to apply piezoelectric transformer for PDA backlight inverter, piezoelectric transformer using the composition which $Nb_2O_5$ added into PNW-PMN-PZT ceramics was fabricated as Rosen-type one with the size of $1165mm^3$. And their electrical characteristics were investigated with the variations of load resistance and driving frequency And then, the driving circuit for PDA CCFL(0.6W) which composed of the two MOSFETs connecting in series was manufactured using piezoelectric transformer, VCO and one-chip microprocessor. After driving for 25 min using the proposed circuit for PDA CCFL(0.6W), driving frequency of 214.4kHz, input voltage of 31.78 V and input current of 21.1mA were shown. And then, output voltage of 293.2 V and output current of 2.2mA were shown. At the same time, efficiency of 96.2$\%$ and temperature rise of $3.6^{\circ}C$ were appeared at the piezoelectric transformer.

  • PDF

Robust Double Deadbeat Control of Single-Phase UPS Inverter (단상 UPS 인버터의 강인한 2중 데드비트제어)

  • 박지호;허태원;안인모;이현우;정재륜;우정인
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.6
    • /
    • pp.65-72
    • /
    • 2001
  • This paper deals with a novel full digital control of the single-phase PWM(Pulse Width Modulation) inviter for UPS(Uninterruptible Power Supp1y). The voltage and current of output filter capacitor as a state variable are the feedback control input. In the proposed scheme a double deadbeat control consisting of minor current control loop and major voltage control loop have been developed In addition, a second order deadbeat currents control which should be exactly equal to its reference in two sampling time without error and overshoot is proposed to remove the influence of the calculation time delay. The load current prediction is achieved to compensate the load disturbance. The simulation and experimental result shows that the proposed system offers an output voltage with THD(Total Harmonic Distortion) less than 5% at a full nonlinear load.

  • PDF

Maximum Torque Control of IPMSM with Adoptive Leaning Fuzzy-Neural Network (적응학습 퍼지-신경회로망에 의한 IPMSM의 최대토크 제어)

  • Chung, Dong-Hwa;Ko, Jae-Sub;Choi, Jung-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.32-43
    • /
    • 2007
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes maximum torque control of IPMSM drive using adaptive learning fuzzy neural network and artificial neural network. This control method is applicable over the entire speed range which considered the limits of the inverter's current and voltage rated value. This paper proposes speed control of IPMSM using adaptive learning fuzzy neural network and estimation of speed using artificial neural network. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled adaptive learning fuzzy neural network and artificial neural network, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the adaptive learning fuzzy neural network and artificial neural network.

Measurement of Setup and Hold Time in a CMOS DFF for a Synchronizer (동기회로 설계를 위한 CMOS DFF의 준비시간과 유지시간 측정)

  • Kim, Kang-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.8
    • /
    • pp.883-890
    • /
    • 2015
  • As the semiconductor processing technology has been developing, multiple cores or NoC(network on chip) can be contained in recent chips. GALS(globally asychronous locally synchronous) clocking scheme that has multi-clock domains with different frequencies or phase differences is widely used to solve power consumption and clock skew in a large chip with a single clock. A synchronizer is needed to avoid a synchronization problem between sender and receiver in GALS. In this paper, the setup and hold time of DFF required to design the synchronizer are measured using 180nm CMOS processing parameters depending on temperature, supply voltage, and the size of inverter in DFF. The simulation results based on the bisection method in HSPICE show that the setup and hold time are proportional to temperature, however they are inversely proportional to supply voltage, and negative values are measured for the hold time.

Rotor Failures Diagnosis of Squirrel Cage Induction Motors with Different Supplying Sources

  • Menacer, Arezki;Champenois, Gerard;Nait Said, Mohamed Said;Benakcha, Abdelhamid;Moreau, Sandrine;Hassaine, Said
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.219-228
    • /
    • 2009
  • The growing application and the numerous qualities of induction motors (1M) in industrial processes that require high security and reliability levels has led to the development of multiple methods for early fault detection. However, various faults can occur, such as stator short-circuits and rotor failures. Traditionally the diagnosis machine is done through a sinusoidal power supply, in the present paper we study experimentally the effects of the rotor failures, such as broken rotor bars in function of the ac supplying, the load and show the impact of the converter from diagnosis of the machine. The technique diagnosis used is based on the spectral analysis of stator currents or stator voltages respectively according to the types of induction motor ac supplying. So, four different ac supplying are considered: ${\odot}$ the IM is directly by the balanced three-phase network voltage source, ${\odot}$ the IM is fed by a sinusoidal current source given the controlled by hysteresis, ${\odot}$ the IM is fed (in open loop) by a scalar control imposing through ratio V/f=constant, ${\odot}$ the IM is controlled through a vector control using space vector pulse width modulation (SVPWM) technique inverter with an outer speed loop.

The Development of Electric Ballast for a Instant Start/Restart of Metalhalide Lamp (메탈핼라이드램프용 순시점등/재점등 전자식안정기 개발)

  • Kim, Su-Kyoung;Jang, Woo-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.9-15
    • /
    • 2004
  • The most shortcoming of metalhalide lamps is what the instant restarting cannot be realized when the arc tube is in the hot condition. The discharge starting voltage of arc tube in the hot condition is much higher than in the cold condition. Therefore it takes about five minutes to restart the metalhalide lamps, that is to say, it is possible to start when the pressure and the temperature are decreased. But, if the lamp is restarted in the hot condition, we must supply the high voltage pulse with 20[kV] at the both electrode of lamp. The proposed electronic ballast is consist of a electromagnetic interference(EMI) filter, a power factor correction(PFC) circuit, a flyback converter, a half-bridge inverter, and a high voltage igniter circuit. By this composition we can start/restart the lamp with the voltage 20[kV], even if the lamp is in the hot condition.

Characteristics of Plasma Plume with a Cylindrical Syringe Plasma Jet Device (원통형 바늘 구조의 플라즈마 제트 방출 특성)

  • Lim, H.K.;Jin, D.J.;Kim, J.H.;Han, S.H.;Cho, G.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.1
    • /
    • pp.14-21
    • /
    • 2011
  • The plasma emission characteristics are investigated in cylindrical syringe plasma jet device. Cylindrical syringe electrode is applied AC power using inverter. In the center of syringe is injected into a inert gas and plasma jet occurs. If there is no ground electrode, firing voltage is 3 kV and plasma column length is 10 mm. According to high firing voltage and large current, the plasma column length control is difficult. The case of an internal ground electrode, firing voltage is 1 kV. Because of the losing current from internal ground, even if a higher input voltage, plasma emission does not occur. The case of an external ground electrode, the plasma column can be controlled between 0~10 mm with change the applied voltage from 1 to 2 kV, and the discharging current changed from 1 to 4 mA.

A Study on Electronic Ballast for 1[kW] Metal-Halide Lamp Developed by Eliminating Acoustic Resonance using Frequency Modulation Method (주파수 변조 기법을 이용하여 음향공명 현상을 제거한 1[kW] 메탈 핼라이드 램프용 전자식 안정기 개발)

  • Park, Chong-Yun;Lee, Bong-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.10-18
    • /
    • 2008
  • This paper presents the design and imelementation of an electronic ballast with a passive PFC structure from which acoustic resonance of the metal halide lamp was removed by introducing the frequency modulation(FM) method. The proposed ballast consists of an EMI filter, passive PFC circuit full-bridge inverter, LC resonance type igniter and a circuit for removing acoustic resonance. The FM method solved two problems associated with single frequency driving: variation of the acoustic resonance range according to lamp aging and the acoustic resonance range discrepancy caused by different materials sealed inside the arc tube and their pressures for arc tubes of identical sizes from different manufacturers. Performance of the prototype developed for this study of the electronic ballast for 1[kW] metal halide lamp was verified by evaluating its optical conversion efficiency, input PF, input current THD and power conversion efficiency.