• Title/Summary/Keyword: Power inverter

Search Result 3,963, Processing Time 0.03 seconds

Analysis of Electrical Characteristics of Dual Gate IGBT for Electrical Vehicle (전기자동차용 이중 게이트 구조를 갖는 전력 IGBT소자의 전기적인 특성 분석)

  • Kang, Ey Goo
    • Journal of IKEEE
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • IGBT (Insulated Gate Bipolar Transistor) device is a device with excellent current conducting capability, it is widely used as a switching device power supplies, converters, solar inverter, household appliances or the like, designed to handle the large power. This research was proposed 1200 class dual gate IGBT for electrical vehicle. To compare the electrical characteristics, The planar gate IGBT and trench gate IGBT was designd with same design and process parameters. And we carried to compare electrical characteristics about three devices. As a result of analyzing electrical characteristics, The on state voltage drop charateristics of dual gate IGBT was superior to those of planar IGBT and trench IGBT. Therefore, Aspect to Energy Loss, dual gate IGBT was efficiency. The breakdown volgate and threshold voltage of planar, trench and dual gate IGBT were 1460V and 4V.

A High-Performance Position Sensorless Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 위치검출기 없는 리럭턴스 동기전동기의 고성능 제어시스템)

  • 김민회;김남훈;백원식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.81-90
    • /
    • 2002
  • This paper presents an Implementation of digital high-performance position sensorless control system of Reluctance Synchronous Motor(RSM) drives with Direct Torque Control(DTC). The system consists of stator flux observer, speed and torque estimator, two digital hysteresis controllers, an optimal switching look-up table, Insulated Gate Bipolar Transistor(IGBT) voltage source inverter, and TMS320C31 DSP board. The stator flux observer Is based on the combined voltage and current model with stator flux feedback adaptive control of which inputs are current and voltage sensed on motor terminal for wide speed range. In order to prove the suggested sensorless control algorithm for industrial field application, we have some simulation and actual experiment at low and high speed range. The developed high-performance speed control by fully digital system are shown a good response characteristic of control results and high performance features using 1.0[kW] RSM having 2.57 reluctance ratio of $L_d/L_q$.

Air-pressure Control of Diaphragm using Variable Frequency Current Control (가변 주파수 전류 제어에 의한 다이어프램의 압력제어)

  • Lim, Geun-Min;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.258-265
    • /
    • 2011
  • This paper presents a variable frequency current control scheme for the air-pressure control of diaphragm. Differ from the conventional air-pressure control of diaphragm, the proposed method uses a single-phase inverter to control the phase current and frequency. The phase current is adjusted to keep the reference air-pressure of the diaphragm. And the current frequency is changed to reduce the mechanical vibration. In order to smooth change of the operation with a constant air-pressure, the frequency is changed according to the voltage reference from the current controller. When the phase current is satisfied to the constant air-pressure, the current frequency is increased to reduce the vibration of the diaphragm. When the reference voltage to keep the phase current is over than the set value, the current frequency is decreased to keep the air-pressure. The proposed control scheme is verified by the experimental test of a commercial diaphragm.

Design of the Fuel Cell Powered Line-Interactive UPS System (연료전지 시스템을 이용한 Line-Interactive 방식의 무정전 전원 공급 장치의 설계)

  • Choi, Woo-Jin;Jeon, Hee-Jong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.205-212
    • /
    • 2004
  • In this paper the design of a 1-[KVA] fuel cell powered line-interactive UPS system employing modular (fuel cell & DC/DC converter) blocks is proposed. The proposed system employs the two fuel cell modules along with suitable DC/DC converters and these modules share the DC-Link of the DC/AC inverter. A supercapacitor module is also employed to compensate for the instantaneous power fluctuations and to overcome the slow dynamics of the fuel processor. The energy stored in the supercapacitor can also be utilized to handle the overload conditions for a short time period. Due to the absence of batteries, the system satisfies the demand for an environmentally friendly and dean source of the energy. A complete design example illustrating the amount of hydrogen storage required for 1hr power outage, and sizing of supercacpacitor for transient load demand is presented for a 1-[KVA] UPS.

A Rotor Position Estimation of Brushless DC Motors using Neutral Voltage Compensation Method (중성점전압보상 방식을 이용한 브러시리스직류전동기의 회전자위치 추정)

  • Song Joong-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.491-497
    • /
    • 2004
  • This paper presents a new rotor position estimation method for brushless DC motors. It is clear that the estimation error of the rotor position provokes the phase shift angle misaligned between the phase current and the back-EMF waveforms, which causes torque ripple in brushless DC motor drives. Such an estimation error can be reduced with the help of the proposed neutral voltage-based estimation method that is structured in the form of a closed loop observer. A neutral voltage appearing during the normal mode of the inverter operation is found to be an observable and controllable measure, which can be dealt with for estimating an exact rotor position. This neutral voltage is obtained from the DC-link current, the switching logic, and the motor speed values. The proposed algorithm, which can be implemented easily by using a single DC-link current and the motor terminal voltage sensors, is verified by simulation and experiment results.

A Torque Ripple Reduction of Miniature BLDC using Instantaneous Voltage Control (초고속 소형 BLDC의 순시 전압 제어에 의한 토크 리플 억제)

  • Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.191-198
    • /
    • 2007
  • This paper proposes the instantaneous source voltage and phase current control for torque ripple reduction of a high speed miniature BLDC motor. As compared with general BLDC motor, a high speed miniature BLDC motor has a fast electrical time-constant. So the current and torque ripple are very serious in a conventional PWM switching during conduction period. In order to reduce the switching current ripple, instantaneously controlled source voltage is supplied to the inverter system according to the motor speed and load torque. In addition, the fast hysteresis current controller can keep the phase current In the limited band. The proposed method is verified by the computer simulation and experimental results.

Comparative Study of Minimum Ripple Switching Loss PWM Hybrid Sequences for Two-level VSI Drives

  • Vivek, G.;Biswas, Jayanta;Nair, Meenu D.;Barai, Mukti
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1729-1750
    • /
    • 2018
  • Voltage source inverters (VSIs) are widely used to drive induction motors in industry applications. The quality of output waveforms depends on the switching sequences used in pulse width modulation (PWM). In this work, all existing optimal space vector pulse width modulation (SVPWM) switching strategies are studied. The performance of existing SVPWM switching strategies is optimized to realize a tradeoff between quality of output waveforms and switching losses. This study generalizes the existing optimal switching sequences for total harmonic distortions (THDs) and switching losses for different modulation indexes and reference angles with a parameter called quality factor. This factor provides a common platform in which the THDs and switching losses of different SVPWM techniques can be compared. The optimal spatial distribution of each sequence is derived on the basis of the quality factor to minimize harmonic current distortions and switching losses in a sector; the result is the minimum ripple loss SVPWM (MRSLPWM). By employing the sequences from optimized switching maps, the proposed method can simultaneously reduce THDs and switching losses. Two hybrid SVPWM techniques are proposed to reduce line current distortions and switching losses in motor drives. The proposed hybrid SVPWM strategies are MRSLPWM 30 and MRSLPWM 90. With a low-cost PIC microcontroller (PIC18F452), the proposed hybrid SVPWM techniques and the quality of output waveforms are experimentally validated on a 2 kVA VSI based on a three-phase two-level insulated gate bipolar transistor.

Seamless Transition Strategy for Wide Speed-Range Sensorless IPMSM Drives with a Virtual Q-axis Inductance

  • Shen, Hanlin;Xu, Jinbang;Yu, Baiqiang;Tang, Qipeng;Chen, Bao;Lou, Chun;Qiao, Yu
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1224-1234
    • /
    • 2019
  • Hybrid rotor position estimation methods that integrate a fundamental model and high frequency (HF) signal injection are widely used for the wide speed-range sensorless control of interior permanent-magnet synchronous machines (IPMSMs). However, the direct transition of two different schemes may lead to system fluctuations or system instability since two estimated rotor positions based on two different schemes are always unequal due to the effects of parameter variations, system delays and inverter nonlinearities. In order to avoid these problems, a seamless transition strategy to define and construct a virtual q-axis inductance is proposed in this paper. With the proposed seamless transition strategy, an estimated rotor position based on a fundamental model is forced to track that based on HF signal injection before the transition by adjusting the constructed virtual q-axis inductance. Meanwhile, considering that the virtual q-axis inductance changes with rotor position estimation errors, a new observer with a two-phase phase-locked loop (TP-PLL) is developed to accurately obtain the virtual q-axis inductance online. Furthermore, IPMSM sensorless control with maximum torque per ampere (MTPA) operations can be tracked automatically by selecting the proper virtual q-axis inductance. Finally, experimental results obtained from an IPMSM demonstrate the feasibility of the proposed seamless transition strategy.

Fault-tree based reliability analysis for bidirectional converter (고장나무를 이용한 양방향 컨버터의 신뢰성 분석)

  • Heo, Dae-ho;Kang, Feel-soon
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.254-260
    • /
    • 2019
  • The failure rate of bidirectional dc-to-dc converter is predicted through the failure mode and effect analysis (FMEA) and the fault-tree analysis (FTA) considering the operational risk. In order to increase the driving voltage of the electric vehicle efficiently, the bidirectional converter is attached to the front of the inverter. It has a boost mode for discharging battery power to the dc-link capacitor and a buck mode for charging the regenerative power to the battery. Based on the results of the FMEA considering the operating characteristics of the bidirectional converter, the fault-tree is designed considering the risk of the converter. After setting the design parameters for the MCU for the electric vehicle, we analyze the failure rate of the capacitor due to the output voltage ripple and the inductor component failure rate due to the inductor current ripple. In addition, we obtain the failure rate of major parts according to operating temperature using MIL-HDBK-217F. Finally, the failure rate and the mean time between failures (MTBF) of the converter are predicted by reflecting the part failure rate to the basic event of the fault-tree.

A Robust Harmonic Compensation Technique using Digital Lock-in Amplifier under the Non-Sinusoidal Grid Voltage Conditions for the Single Phase Grid Connected Inverters (디지털 록인 앰프를 이용한 비정현 계통 전압 하에서 강인한 단상계통 연계 인 버터용 고조파 보상법)

  • Khan, Reyyan Ahmad;Ashraf, Muhammad Noman;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.95-97
    • /
    • 2018
  • The power quality of Single Phase Grid-Connected Inverters (GCIs) has received much attention with the increasing number of Distributed Generation (DG) systems. However, the performance of single phase GCIs get degraded due to several factors such as the grid voltage harmonics, the dead time effect, and the turn ON/OFF of the switches, which causes the harmonics at the output of GCIs. Therefore, it is not easy to satisfy the harmonic standards such as IEEE 519 and P1547 without the help of harmonic compensator. To meet the harmonic standards a certain kind of harmonic controller needs to be added to the current control loop to effectively mitigate the low order harmonics. In this paper, the harmonic compensation is performed using a novel robust harmonic compensation method based on Digital Lock-in Amplifier (DLA). In the proposed technique, DLAs are used to extract the amplitude and phase information of the harmonics from the output current and compensate it by using a simple PI controller in the feedforward manner. In order to show the superior performance of the proposed harmonic compensation technique, it is compared with those of conventional harmonic compensation methods in terms of the effectiveness of harmonic elimination, complexity, and implementation. The validity of the proposed harmonic compensation techniques for the single phase GCIs is verified through the experimental results with a 5kW single phase GCI. Index Terms -Single Phase Grid Connected Inverter (SPGCI), Harmonic Compensation Method, Total Harmonic Distortion (THD) and Harmonic Standard.

  • PDF