• 제목/요약/키워드: Power integrity analysis

검색결과 325건 처리시간 0.034초

모바일 디스플레이 회로 모듈의 시그널 인티그리티 해석 기법 (Analysis Method of Signal Integrity for Mobile Display Circuit Modules)

  • 이용민
    • 전자공학회논문지SC
    • /
    • 제46권4호
    • /
    • pp.64-69
    • /
    • 2009
  • 본 논문은 모바일 디스플레이모듈의 signal integrity와 power integrity의 시뮬레이션 방법에 관한 것이다. 본 제안 방법은 커넥터, FPCB, 드라이버IC를 포함하는 회로모듈 해석에 사용할 수 있다. 최근에 모바일 디스플레이 업계의 시리얼 인터커넥션기술에 대한 필요성 대두로 시스템오동작 방지 및 전자기파 발생을 억제하기 위해 신호선과 전원전압에 대한 섬세한 컨트롤이 필요하다. S파라미터와 Z파라미터 분석으로 주파수 도메인과 시간 도메인에서의 상관관계를 분석한다. 멀티포트 매크로를 이용하여 시간 도메인에서 sigh integrity를 power integrity에 함께 분석할 수 있다.

위성용 전장품 탑재보드의 Power Integrity 및 Signal Integrity 설계 분석을 통한 노이즈 성능 개선 (Improvement of Noise Characteristics by Analyzing Power Integrity and Signal Integrity Design for Satellite On-board Electronics)

  • 조영준;김철영
    • 한국항공우주학회지
    • /
    • 제48권1호
    • /
    • pp.63-72
    • /
    • 2020
  • 본 연구에서는 위성용 전장품 보드의 성능 요구조건과 설계 복잡도가 높아지면서 증가되는 노이즈 문제를 최소화하기 위해 전원 건전성(Power Integrity) 및 신호 건전성(Signal Integrity)의 설계 분석이 수행되었고 이를 통해 적용된 설계 개선 내용을 기술하였다. 전원 건전성은 정전류 전압강하(DC IR drop) 해석을 통해 정적 전원의 특성을 분석하였고, 각 전원의 임피던스 해석을 통해 동적 전원의 특성을 분석하여 각 분석 결과를 이용한 설계 개선 방안들이 적용되었다. 신호 건전성 측면에서는 주요 데이터버스 신호에 대한 시간영역 파형 분석과 PCB(Printed Circuit Board) 설계 수정을 통해 노이즈가 개선된 결과를 확인하였다. 또한 설계된 PCB 보드의 전원 층에 대한 공진모드를 분석하여 발생된 공진 영역들에 완화 조치를 적용하였고 조치결과를 시뮬레이션을 통해 확인하였다. 최종적으로 분석을 통해 설계 개선이 적용된 유닛에 대해 수정 전과 후의 EMC(Electro Magnetic Compatibility) RE(Radiated Emission) 노이즈 측정결과를 비교함으로써 방사성 노이즈가 감소되었음을 확인하였다.

Overview of 3-D IC Design Technologies for Signal Integrity (SI) and Power Integrity (PI) of a TSV-Based 3D IC

  • Kim, Joohee;Kim, Joungho
    • 한국전자파학회지:전자파기술
    • /
    • 제24권2호
    • /
    • pp.3-14
    • /
    • 2013
  • In this paper, key design issues and considerations for Signal Integrity(SI) and Power Integrity(PI) of a TSV-based 3D IC are introduced. For the signal integrity and power integrity of a TSV-based 3-D IC channel, analytical modeling and analysis results of a TSV-based 3-D channel and power delivery network (PDN) are presented. In addition, various design techniques and solutions which are to improve the electrical performance of a 3-D IC are investigated.

원자력발전소 1차 계통 주요기기에 대한 웹기반 피로수명평가 시스템 개발 (Development of a Web-based Fatigue Life Evaluation System for Primary Components in a Nuclear Power Plant)

  • 서형원;이상민;최재붕;최성남;장기상;홍승렬;김영진
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.663-669
    • /
    • 2004
  • A nuclear power plant is composed of a number of primary components. Maintaining the integrity of these components is one of the most critical issues in nuclear industry. In order to maintain the integrity of these primary components, a complicated procedure is required including regular in-service inspection, failure assessment, fracture mechanics analysis, etc. Also, experts in different fields have to co-operate to resolve the integrity issues on the basis of inspection results. This integrity evaluation process usually takes long, and thus, is detrimental for the plant productivity. Therefore, an effective safety evaluation system is essential to manage the integrity issues on a nuclear power plant. In this paper, a web-based fatigue life evaluation system for primary components in nuclear power plant is proposed. This system provides engineering knowledge-based information and concurrent and collaborative working environment through internet, and thus, is expected to raise the efficiency of integrity evaluation procedures on primary components of a nuclear power plant.

원자력발전소 1 차 계통 주요기기에 대한 웹기반 피로수명평가 시스템 개발 (Development of a Web-based Fatigue Life Evaluation System for Primary Components in a Nuclear Power Plant)

  • 서형원;이상민;최재붕;김영진;최성남;장기상;홍승렬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.279-284
    • /
    • 2003
  • A nuclear power plant is composed of a number of primary components. Maintaining the integrity of these components is one of the most critical issues in nuclear industry. In order to maintain the integrity of these primary components, a complicated procedure is required including regular in-service inspection, failure assessment, fracture mechanics analysis, etc. Also, experts in different fields have to co-operate to resolve the integrity issues on the basis of inspection results. This integrity evaluation process usually takes long, and thus, is detrimental for the plant productivity. Therefore, an effective safety evaluation system is essential to manage the integrity issues on a nuclear power plant. In this paper, a web-based fatigue life evaluation system for primary components in nuclear power plant is proposed. This system provides engineering knowledge-based information and concurrent and collaborative working environment through internet, and thus, is expected to raise the efficiency of integrity evaluation procedures on primary components of a nuclear power plant.

  • PDF

원자로용기 건전성평가를 위한 RVIES 시스템의 개발 (Development of a RVIES Syetem for Reactor Vessel Integrity Evaluation)

  • 이택진;최재붕;김영진;박윤원;정명조
    • 대한기계학회논문집A
    • /
    • 제24권8호
    • /
    • pp.2083-2090
    • /
    • 2000
  • In order to manage nuclear power plants safely and cost effectively, it is necessary to develop integrity evaluation methodologies for the main components. Recently, the integrity evaluation techniques were broadly studied regarding the license renewal of nuclear power plants which were approaching their design lives. Since the integrity evaluation process requires special knowledges and complicated calculation procedures, it has been allowed only to experts in the specified area. In this paper, an integrity evaluation system for reactor pressure vessel was developed. RVIES(Reactor Vessel Integrity Evaluation System) provides four specific integrity evaluation procedures covering PTS(Pressurized Thermal Shock) analysis, P-T(Pressure-Temperature) limit curve generation, USE(Upper Shelf Energy) analysis and Fatigue analysis. Each module was verified by comparing with published results.

원자력 발전소 보조급수펌프의 구조 건전성에 관한 연구 (A Study on the Structural Integrity of an Auxiliary Feed Water Pump in a Nuclear Power Plant)

  • 김재실;조방현
    • 한국기계가공학회지
    • /
    • 제13권3호
    • /
    • pp.42-48
    • /
    • 2014
  • The auxiliary-feed-water pump (AFWP) used to supply water during a station black out situation at nuclear power plants should meet the seismic qualification regulations stipulated in IEEE Std 323 and 344, so as to withstand earthquakes or dangerous situations. Here, we establish a model for the estimation of the structural integrity of this type of pump. If the natural frequency that results from a modal analysis is less than 33 Hz, we adopt a dynamic analysis, instead of a static analysis. A dynamic analysis was carried out taking into consideration seismic conditions such as the floor response spectra (FRS), an operation-base earthquake (OBE), and a safe-shutdown earthquake (SSE). Finally, an analytical estimation of the structural integrity of an AFWP is made through a comparison of calculated values and allowable values. If the result is less than the allowable stress, the pump is deemed to have good structural integrity. In addition, future studies will involve a stability check for rotor accidents that may occur during the operation of the pump.

A Study on the Long-Term Integrity of Polymer Concrete for High Integrity Containers

  • Young Hwan Hwang;Mi-Hyun Lee;Seok-Ju Hwang;Jung-Kwon Son;Cheon-Woo Kim;Suknam Lim
    • 방사성폐기물학회지
    • /
    • 제21권3호
    • /
    • pp.411-417
    • /
    • 2023
  • During the operation of a nuclear power plant (NPP), the generation of radioactive waste, including dry active waste (DAW), concentrates, spent resin, and filters, mandates the implementation of appropriate disposal methods to adhere to Korea's waste acceptance criteria (WAC). In this context, this study investigates the potential use of polymer concrete (PC) as a high-integrity container (HIC) material for solidifying and packaging these waste materials. PC is a versatile composite material comprising binding polymers, aggregates, and additives, known for its exceptional strength and chemical stability. A comprehensive analysis of PC's long-term integrity was conducted in this study. First, its compressive strength, which is crucial for ensuring the structural stability of HICs over extended periods, was evaluated. Subsequently, the resilience of PC was tested under various stress conditions, including biological, radiological, thermal, and chemical stressors. The findings of this study indicate that PC exhibits remarkable long-term properties, demonstrating exceptional stability even when subjected to diverse stressors. The results therefore underscore the potential viability of PC as a reliable material for constructing high-integrity containers, thus contributing to the safe and sustainable management of radioactive waste in NPPs.

STEAM GENERATOR TUBE INTEGRITY ANALYSIS OF A TOTAL LOSS OF ALL HEAT SINKS ACCIDENT FOR WOLSONG NPP UNIT 1

  • Lim, Heok-Soon;Song, Tae-Young;Chi, Moon-Goo;Kim, Seoung-Rae
    • Nuclear Engineering and Technology
    • /
    • 제46권1호
    • /
    • pp.39-46
    • /
    • 2014
  • A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV) become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS) and the steam generator (SG) secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.

원전 금속단열재의 구조 건전성 강화를 위한 설계 방안 (Design for Strengthening Structural Integrity of the Reflective Metal Insulation in the Nuclear Power Plant)

  • 이성명;어민훈;김승현;장계환
    • 한국안전학회지
    • /
    • 제30권3호
    • /
    • pp.107-113
    • /
    • 2015
  • The goal of this paper is to investigate structural integrity factors of RMI(reflective metal insulation) to confirm the design requirements in nuclear power plant. Currently, a glass wool insulation is using now, but it will gradually be replaced with the reflective metal insulation maded by stainless steel plates. The main function of an insulation is to minimize a heat loss of vessel and pipes in RCS(reactor coolant system). It has to maintain structural a integrity in nuclear power plant life duration. In this study, the structural integrity analysis was carried out both multi-plate and outer shell plate by using a static analysis and experimental test. First, inner multi-plate has a self support structure for being air space. Because the effect of total static weight in multi-layer plate is low, a plate collapse possibility is not high. Considering optimum thin plate pressing process, it has to pre-check the basic physical properties. Second, the outer segment thickness and stiffener shape are verified by the numerical static analysis, and sample test for both type of panel and cylindrical pipe model.