• 제목/요약/키워드: Power generation technology

검색결과 2,163건 처리시간 0.032초

대용량 연료전지시스템의 계통외란 방지알고리즘에 관한 연구 (A Study on the Countermeasure Algorithm for Power System Disturbances in Large Scale Fuel Cell Generation System)

  • 최성식;김병기;박재범;노대석
    • 전기학회논문지
    • /
    • 제65권5호
    • /
    • pp.711-717
    • /
    • 2016
  • Recently, fuel cell generation system with high energy efficiency and low CO2 emission is energetically interconnected with distribution power system. Especially, MCFC(molten carbonate fuel cell) operating at high temperature conditions is commercialized and installed as a form of large scale power generation system. However, it is reported that power system disturbances such as harmonic distortion, surge phenomenon, unbalance current, EMI(Electromagnetic Interference), EMC (Electromagnetic Compatibility) and so on, have caused several problems including malfunction of protection device and damage of control devices in the large scale FCGS(Fuel Cell Generation System). Under these circumstances, this paper proposes countermeasure algorithms to prevent power system disturbances based on the modelling of PSCAD/EMTDC and P-SIM software. From the simulation results, it is confirmed that proposed algorithms are useful method for the stable operation of a large scale FCGS.

Smart Grid-The next Generation Electricity Grid with Power Flow Optimization and High Power Quality

  • Hu, Jiefeng;Zhu, Jianguo;Platt, Glenn
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권4호
    • /
    • pp.425-433
    • /
    • 2012
  • As the demand for electric power increases rapidly and the amount of fossil fuels decreases year by year, making use of renewable resources seem very necessary. However, due to the discontinuous nature of renewable resources and the hierarchical topology of existing grids, power quality and grid stability will deteriorate as more and more distributed generations (DGs) are connected to the grids. It is a good idea to combine local utilization, local consumption, energy storage and DGs to form a grid-friendly micro grid, these micro grids can then assembled into an intelligent power system - the smart Grid. It can optimize power flow and integrate power generation and consumption effectively. Most importantly, the power quality and grid stability can be improved greatly. This paper depicts how the smart grid addresses the current issues of a power system. It also figures out the key technologies and expectations of the smart grid.

변전소 자동화 환경에서 웹 기반 전기품질 감시 시스템 (A web-based power quality monitoring system in the Substation Automation System)

  • 박동호;임성정;신재항;임성일;이승재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.378-380
    • /
    • 2004
  • Along with the increase of the importance of power quality, many various systems are dedicated in the analysis of power quality nowadays. But there still exists the same problems for realizing such kind of analysis systems well. One is the customization of the power quality measure devices; The other is an economic problem. This paper presents the usefulness and the advantage of the ICD (Intelligent Electronic Device) as the measure device of power quality And this paper detailedly describes the development procedure of web-based power quality monitoring system through ActiveX controls. Now this power quality monitoring system is already applied to the substation automation system.

  • PDF

Flexible Voltage Support Control with Imbalance Mitigation Capability for Inverter-Based Distributed Generation Power Plants under Grid Faults

  • Wang, Yuewu;Yang, Ping;Xu, Zhirong
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1551-1564
    • /
    • 2016
  • The high penetration level of inverter-based distributed generation (DG) power plants is challenging the low-voltage ride-through requirements, especially under unbalanced voltage sags. Recently, a flexible injection of both positive- (PS) and negative-sequence (NS) reactive currents has been suggested for the next generation of grid codes. This can enhance the ancillary services for voltage support at the point of common coupling (PCC). In light of this, considering distant grid faults that occur in a mainly inductive grid, this paper proposes a complete voltage support control scheme for the interface inverters of medium or high-rated DG power plants. The first contribution is the development of a reactive current reference generator combining PS and NS, with a feature to increase the PS voltage and simultaneously decrease the NS voltage, to mitigate voltage imbalance. The second contribution is the design of a voltage support control loop with two flexible PCC voltage set points, which can ensure continuous operation within the limits required in grid codes. In addition, a current saturation strategy is also considered for deep voltage sags to avoid overcurrent protection. Finally, simulation and experimental results are presented to validate the effectiveness of the proposed control scheme.

지증 배전계통을 위한 1선지락 고장거리계산 방법 (A Line-to-ground Cable Fault Location Method for Underground Distribution System)

  • 양하;이덕수;최면송
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.329-331
    • /
    • 2005
  • This paper proposes a line-to-ground cable fault location method for underground distribution system. The researched cable is composed of core and sheath. And underground cabke system has been analyzed using Distributed Parameter Circuit. The effectiveness of proposed algorithm has been verified through EMTDC simulations.

  • PDF

80C196KC를 이용한 과전류 계전 알고리즘 구현 (Implementation of an Over-Current Relaying Algorithm Using 80C196KC)

  • 김형규;이봉현;강상희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.495-496
    • /
    • 2007
  • An Over Current Relayng algorithm using 80c196kc micro processor was realized in this paper. This OCR Algorithm was verified with simulated fault signal. The fault signal was made by EMTP and realized by DOBLE to compare H/W test with S/W test. This simulations showed similar result between H/W and S/W test.

  • PDF

80C196KC를 이용한 변압기 보호 계전기 (Ratio Differential Relay Using 80C196KC Microprocessor for Transformer Protection)

  • 황용연;최창영;강상희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.505-506
    • /
    • 2007
  • A ratio differential relay using 80C196KC microprocessor was developed in this paper. The internal faults, external faults and inrush were simulated by EMTP. The performance of developed relay was verified with software and hardware simulation.

  • PDF

하절기의 에너지원별 발전설비용량 대비 발전량에 관한 연구 (A Study on the Power Generation Compared to the Capacity of Power Generation Facilities by Energy Sources in Summer Season)

  • 김청균
    • 한국가스학회지
    • /
    • 제23권1호
    • /
    • pp.36-40
    • /
    • 2019
  • 본 연구에서는 최근 4년간(2015년~2018년)의 하절기 기간(6월~8월)에 생산한 발전량 및 발전설비용량 데이터를 기반으로 천연가스, 석탄, 원자력, 신재생에너지 상호간의 가동률에 대해 비교 분석한 것이다. 기저발전을 담당하는 원자력 발전과 석탄 발전은 발전설비용량에 비해 실제로 생산한 발전량이 60% 정도로 높게 유지되었기 때문에 경제성을 확보한 것이다. 반면에 천연가스 발전과 신재생에너지 발전은 발전설비 투자 대비 실제 가동률이 29.5%와 27.3%로 대단히 낮아 발전원가를 낮추기 어려운 구조이다. 그러나 석탄 발전은 온실가스와 미세먼지 발생량 측면에서 구조적인 문제점을 갖고 있다. 반면에 천연가스 발전은 상대적으로 온실가스 발생량이 적고 안전해도 첨두발전 체계에 묶여 경제성을 확보하기 어려운 구조이다. 따라서 발전정책의 변화가 있어야 에너지원간의 균형발전이 가능할 것으로 예상된다.

표준기상 데이터와 열해석을 이용한 태양광열 모듈의 필요 냉각수량 산출 (Calculation of Required Coolant Flow Rate for Photovoltaic-thermal Module Using Standard Meteorological Data and Thermal Analysis)

  • 이천규;정효재
    • 반도체디스플레이기술학회지
    • /
    • 제21권4호
    • /
    • pp.18-22
    • /
    • 2022
  • Photovoltaics (PV) power generation efficiency is affected by meteorological factors such as temperature and wind speed. In general, it is known that the power generation amount decreases because photovoltaics panel temperature rises and the power generation efficiency decreases in summer. Photovoltaics Thermal (PVT) power generation has the ad-vantage of being able to produce heat together with power, as well as preventing the reduction in power generation efficien-cy and output due to the temperature rise of the panel. In this study, the amount of heat collected by season and time was calculated for photovoltaics thermal modules using the International Weather for Energy Calculations (IWEC) data provided by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). Based on this, we propose a method of predicting the temperature of the photovoltaics panel using thermal analysis and then calculating the flow rate of coolant to improve power generation efficiency. As the results, the photovoltaics efficiencies versus time on January, April, July, and October in Jeju of the Republic of Korea were calculated to the range of 15.06% to 17.83%, and the maxi-mum cooling load and flow rate for the photovoltaics thermal module were calculated to 121.16 W and 45 cc/min, respec-tively. Though this study, it could be concluded that the photovoltaics thermal system can be composed of up to 53 modules with targeting the Jeju, since the maximum capacity of the coolant circulation pump of the photovoltaics thermal system applied in this study is 2,400 cc/min.

Thyristor-Based Resonant Current Controlled Switched Reluctance Generator for Distributed Generation

  • Emadi Ali;Patel Yogesh P.;Fahimi Babak
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권1호
    • /
    • pp.68-80
    • /
    • 2007
  • This paper covers switched reluctance generator (SRG) and its comparison with induction and synchronous machines for distributed generation. The SRG is simple in design, robust in construction, and fault tolerant in operation; it can also withstand very high temperatures. However, the performance and cost of the SRG power electronics driver are highly affected by the topology and design of the converter. IGBT and MOSFET based converters are not suitable for very high power applications. This paper presents thyristor-based resonant converters which are superior candidates for very high power applications. Operations of the converters are analyzed and their characteristics and dynamics are determined in terms of the system parameters. The resonant converters are capable of handling high currents and voltages; these converters are highly efficient and reliable as well. Therefore, they are suitable for high power applications in the range of 1MW or larger for distributed generation.