• Title/Summary/Keyword: Power generation forecast

Search Result 83, Processing Time 0.031 seconds

The Development of the Short-Term Predict Model for Solar Power Generation (태양광발전 단기예측모델 개발)

  • Kim, Kwang-Deuk
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.62-69
    • /
    • 2013
  • In this paper, Korea Institute of Energy Research, building integrated renewable energy monitoring system that utilizes solar power generation forecast data forecast model is proposed. Renewable energy integration of real-time monitoring system based on monitoring data were building a database and the database of the weather conditions and to study the correlation structure was tailoring. The weather forecast cloud cover data, generation data, and solar radiation data, a data mining and time series analysis using the method developed models to forecast solar power. The development of solar power in order to forecast model of weather forecast data it is important to secure. To this end, in three hours, including a three-day forecast today Meteorological data were used from the KMA(korea Meteorological Administration) site offers. In order to verify the accuracy of the predicted solar circle for each prediction and the actual environment can be applied to generation and were analyzed.

Analysis on Factors Influencing on Wind Power Generation Using LSTM (LSTM을 활용한 풍력발전예측에 영향을 미치는 요인분석)

  • Lee, Song-Keun;Choi, Joonyoung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.433-438
    • /
    • 2020
  • Accurate forecasting of wind power is important for grid operation. Wind power has intermittent and nonlinear characteristics, which increases the uncertainty in wind power generation. In order to accurately predict wind power generation with high uncertainty, it is necessary to analyze the factors affecting wind power generation. In this paper, 6 factors out of 11 are selected for more accurate wind power generation forecast. These are wind speed, sine value of wind direction, cosine value of wind direction, local pressure, ground temperature, and history data of wind power generated.

A Study on Photovoltaic Power Generation Amount Forecast at Design Stage for Extended Application in the Field of Railways (철도분야 태양광 발전 적용 확대를 위한 설계 단계에서의 태양광 발전량 예측 연구)

  • Yoo, Bok-Jong;Lee, Ju
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.182-189
    • /
    • 2017
  • Photovoltaic power generation systems make up a large part of the low carbon energy trend. The purpose of this study is to utilize PVsyst, a commercial forecasting program, to forecast research on the design stages of photovoltaic power generation for wider applications of this system in railroads and to consider prospective issues for photovoltaic power plants that are currently being operated. Given this, we will compare the forecast value of generated photovoltaic power, derived from foreign weather forecast information provided by NASA, along with information from Meteonorm, and the forecast values derived from the KMA weather information. By comparing these values with amounts actually generated by KPX, this research aims to secure propriety rights for wider application of photovoltaic power generation systems in railroads, and to contribute to low carbon energy for the new climate of the future.

A Study on Forecast of Electric Power Generation Mix in the Competitive Electricity Market (전력산업 구조개편 이후 전원구성비율 예측에 관한 연구)

  • Hong, Jung-Suk;Kwak, Sang-Man;Park, Moon-Hee;Choi, Ki-Ryun
    • IE interfaces
    • /
    • v.17 no.3
    • /
    • pp.269-281
    • /
    • 2004
  • How to maintain the optimal electric power generation mix is one of the important problems in electric power industry. The objective of this study is to develop a computer model which can be used to forecast the investment in power generation unit by the plant owners after restructuring of electric power industry. Restructuring of electric power industry will make difference in decision making process of investment in power generation unit. After Privatiazation of Power Industry, Gencos will think that profit is the most important factor among all others attracting the investment in the industry. Coal power generation is better than LNG CCGT in terms of profit. However, many studies show that LNG CCGT will be main electric power generation source because the rest of factors other than profit in LNG CCGT are superior than Coal power generation. The impacts of the various government policies can be analyzed using the computer model, thus the government can formulate effective policies for achieving the desired electric power generation mix.

The forecast of renewable generation cost in Korea (국내 신재생에너지 원별 발전단가 전망)

  • Kim, Kilsin;Han, Youri
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.140-140
    • /
    • 2011
  • Korea's RPS, which requires that power generation companies obtain a minimum percentage of their generation by using renewable energy, will take effect in 2012. Based on the first-year law enforcement, generation companies have to satisfy 2% of RPS compliance ratio in 2012. Then, the required RPS compliance ratio will increase up to 10% in 2022. Thus generation companies need to construct power plants that utilize various types of renewable energy sources such as PV and wind power. This work is aimed to analyze the cost of such a renewable power source in terms of capital cost, capacity factor, and fuel cost. We provide the analytical expectation on the renewable power generation cost of 2012 focusing on PV, onshore/offshore wind, fuel cell, and IGCC, which are focused by government policy.

  • PDF

Solar Power Generation Forecast Model Using Seasonal ARIMA (SARIMA 모형을 이용한 태양광 발전량 예보 모형 구축)

  • Lee, Dong-Hyun;Jung, Ahyun;Kim, Jin-Young;Kim, Chang Ki;Kim, Hyun-Goo;Lee, Yung-Seop
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.3
    • /
    • pp.59-66
    • /
    • 2019
  • New and renewable energy forecasts are key technology to reduce the annual operating cost of new and renewable facilities, and accuracy of forecasts is paramount. In this study, we intend to build a model for the prediction of short-term solar power generation for 1 hour to 3 hours. To this end, this study applied two time series technique, ARIMA model without considering seasonality and SARIMA model with considering seasonality, comparing which technique has better predictive accuracy. Comparing predicted errors by MAE measures of solar power generation for 1 hour to 3 hours at four locations, the solar power forecast model using ARIMA was better in terms of predictive accuracy than the solar power forecast model using SARIMA. On the other hand, a comparison of predicted error by RMSE measures resulted in a solar power forecast model using SARIMA being better in terms of predictive accuracy than a solar power forecast model using ARIMA.

On the Use of Maximum Likelihood and Input Data Similarity to Obtain Prediction Intervals for Forecasts of Photovoltaic Power Generation

  • Fonseca Junior, Joao Gari da Silva;Oozeki, Takashi;Ohtake, Hideaki;Takashima, Takumi;Kazuhiko, Ogimoto
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1342-1348
    • /
    • 2015
  • The objective of this study is to propose a method to calculate prediction intervals for one-day-ahead hourly forecasts of photovoltaic power generation and to evaluate its performance. One year of data of two systems, representing contrasting examples of forecast’ accuracy, were used. The method is based on the maximum likelihood estimation, the similarity between the input data of future and past forecasts of photovoltaic power, and on an assumption about the distribution of the error of the forecasts. Two assumptions for the forecast error distribution were evaluated, a Laplacian and a Gaussian distribution assumption. The results show that the proposed method models well the photovoltaic power forecast error when the Laplacian distribution is used. For both systems and intervals calculated with 4 confidence levels, the intervals contained the true photovoltaic power generation in the amount near to the expected one.

The Development of the Predict Model for Solar Power Generation based on Current Temperature Data in Restricted Circumstances (제한적인 환경에서 현재 기온 데이터에 기반한 태양광 발전 예측 모델 개발)

  • Lee, Hyunjin
    • Journal of Digital Contents Society
    • /
    • v.17 no.3
    • /
    • pp.157-164
    • /
    • 2016
  • Solar power generation influenced by the weather. Using the weather forecast information, it is possible to predict the short-term solar power generation in the future. However, in limited circumstances such as islands or mountains, it can not be use weather forecast information by the disconnection of the network, it is impossible to use solar power generation prediction model using weather forecast. Therefore, in this paper, we propose a system that can predict the short-term solar power generation by using the information that can be collected by the system itself. We developed a short-term prediction model using the prior information of temperature and power generation amount to improve the accuracy of the prediction. We showed the usefulness of proposed prediction model by applying to actual solar power generation data.

Unit Commitment for an Uncertain Daily Load Profile

  • Park Jeong-Do
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.1
    • /
    • pp.16-21
    • /
    • 2005
  • In this study, a new Unit Commitment (UC) algorithm is proposed to consider the uncertainty of a daily load profile. The proposed algorithm calculates the UC results with a lower load level than that generated by the conventional load forecast method and the greater hourly reserve allocation. In case of the worst load forecast, the deviation of the conventional UC solution can be overcome with the proposed method. The proposed method is tested with sample systems, which indicates that the new UC algorithm yields a completely feasible solution even when the worst load forecast is applied. Also, the effects of the uncertain hourly load demand are statistically analyzed, particularly by the consideration of the average over generation and the average under generation. Finally, it is shown that independent power producers participating in electricity spot-markets can establish bidding strategies by means of the statistical analysis. Therefore, it is expected that the proposed method can be used as the basic guideline for establishing bidding strategies under the deregulation power pool.

Use of the Moving Average of the Current Weather Data for the Solar Power Generation Amount Prediction (현재 기상 정보의 이동 평균을 사용한 태양광 발전량 예측)

  • Lee, Hyunjin
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1530-1537
    • /
    • 2016
  • Recently, solar power generation shows the significant growth in the renewable energy field. Using the short-term prediction, it is possible to control the electric power demand and the power generation plan of the auxiliary device. However, a short-term prediction can be used when you know the weather forecast. If it is not possible to use the weather forecast information because of disconnection of network at the island and the mountains or for security reasons, the accuracy of prediction is not good. Therefore, in this paper, we proposed a system capable of short-term prediction of solar power generation amount by using only the weather information that has been collected by oneself. We used temperature, humidity and insolation as weather information. We have applied a moving average to each information because they had a characteristic of time series. It was composed of min, max and average of each information, differences of mutual information and gradient of it. An artificial neural network, SVM and RBF Network model was used for the prediction algorithm and they were combined by Ensemble method. The results of this suggest that using a moving average during pre-processing and ensemble prediction models will maximize prediction accuracy.