• Title/Summary/Keyword: Power factor improvement

Search Result 383, Processing Time 0.028 seconds

ZVT single phase power factor correction circuit with low conduction loss and low cost (저도통 손실, 저가의 ZVT 단상 역률 보상 회로)

  • Baek, J.W.;Cho, J.G.;Kim, W.H.;Rim, G.H.;Song, D.I.;Kwon, S.G.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.255-258
    • /
    • 1996
  • A new low conduction loss, low cost zero-voltage-transition power factor correction circuit(PFC) is presented. Conventional PFC which consists of a bridge diode and a boost converter(one switch) always has three semiconductor conduction drops. Two switch type PFCs reduces conduction loss by reducing one conduction drop but the cost is increased because of increased number of active switches. The proposed PFC reduces conduction loss with one switch, which allows low cost. Conduction loss improvement is a little bit less than that of two switch type, but very close up. Operation and features are comparatively illustrated and verified by simulation and experimental results of 1 kW laboratory prototype.

  • PDF

Optimal Measurement Placement for Static Harmonic State Estimation in the Power Systems based on Genetic Algorithm

  • Dehkordl, Behzad Mirzaeian;Fesharaki, Fariborz Haghighatdar;Kiyournarsi, Arash
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.175-184
    • /
    • 2009
  • In this paper, a method for optimal measurement placement in the problem of static harmonic state estimation in power systems is proposed. At first, for achieving to a suitable method by considering the precision factor of the estimation, a procedure based on Genetic Algorithm (GA) for optimal placement is suggested. Optimal placement by regarding the precision factor has an evident solution, and the proposed method is successful in achieving the mentioned solution. But, the previous applied method, which is called the Sequential Elimination (SE) algorithm, can not achieve to the evident solution of the mentioned problem. Finally, considering both precision and economic factors together in solving the optimal placement problem, a practical method based on GA is proposed. The simulation results are shown an improvement in the precision of the estimation by using the proposed method.

Power factor improvement of LED driver using Valley-fill circuit and a Boosting Inductor (밸리 필 회로 및 부스팅 인덕터를 이용한 LED 구동회로의 역률 개선)

  • Park, Chong-Yeun;Lee, Hak-Beom;Yoo, Jin-Wan
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.103-107
    • /
    • 2011
  • In this paper, a method is proposed to improve power factor and the input current THD in LED driver circuit. The researched circuit consists of a valley-fill circuit and boosting inductor and a Buck converter. Valley-fill circuit is a passive PFC and simplified structure, the buck converter is operated with current feedback. The switching frequency is 50KHz in LED driver circuit and LED forward current is constant. A valley-fill type PFC circuit for LED driver(15Watt) has been implemented, and the validity of proposed method is shown by is simulation and experimental result.

  • PDF

Efficiency and Power Factor Improvement of Induction Motor Using Single-Phase Back Rectifier (단상 강압 정류기를 이용한 유도전동기의 효율 및 역률 개선)

  • 문상필;이현우;서기영
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.4
    • /
    • pp.22-29
    • /
    • 2002
  • Usually, much harmonics are included and cause harmonic loss of motor, torque pulsation, electro-magnetic noise and shock etc. by switching function of inverter when drive induction motor variableness inside. It applied partial resonant Buck converter and three phase voltage type SPWM inverter circuit to induction motor driving system in this paper that see to solve such problem. Changed operation condition variously to do input current of circuit that propose sine-wave by unit power factor almost and capacitor supplied bringing back to life voltage by power supply arranging properly assistance diode and electric power switching. Power factor and efficiency improved as that minimize variation of input at power supply voltage polarity reverse by that add voltage reversal function. Also, by using output filter, reduced harmonic of output line to line voltage components, and introduce state space analysis and forecast operation of rectifier. Such all items confirmed validity through simulation and an experiment.

A Study on the Effects of Gain Flatness of Feedforward Power Amplifier for IMT-2000 Band (IMT-2000용 피드포워드 전력 증폭기의 이득 평탄도의 영향에 관한 연구)

  • 정성찬;박천석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.762-768
    • /
    • 2003
  • This paper reports the effects of gain flatness for linearity improvement of feedforward power amplifier fur IMT-2000 band. To investigate the operational characteristics for gain flatness of each amplifier, WCDMA 4FA input signal was used and measured 10 W output power. Especially, linearity improvement for variation of gain flatness of each amplifier was investigated that have an effect on linearity improvement such as delay line, phase, and amplitude imbalances. Variation of gain flatness of main amplifier is 40 MHz and of error amplifier is 40 MHz and 80 MHz bandwidth, respectively. Measured results, gain flatness of main amplifier is less than 1.5 dB and of error amplifier is less than 0.5 dB for more than 20 dB improvement at 5 MHz offset. In addition to that results, the characteristics of feedforward amplifier are drastically varied by gain flatness of error amplifier and it is shown that gain flatness of error amplifier is more important factor for linearity improvement.

An Improvement of Evaluation Items for a Subjective Workload Assessment in Nuclear Power Plants (원자력발전소의 주관적 업무량 평가를 위한 평가 항목 개선)

  • Park, Jae-kyu;Lee, Yong-Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.687-691
    • /
    • 2010
  • Workload assessment is one of the important elements of the human factors evaluation for the nuclear power plants in operation. This paper describes a further study upon the additional elements of the workload which elements should be considered in the subjective workload assessment. We have tried to predict the burden of the work and to improve the work through a comparison of the objective workload and the subjective workload in the previous studies in nuclear power plants. However, there is a restriction to perform a precise assessment because of the limitations of the method itself. The objective workload assessment is performed by relative comparison using the quadrant analysis with objective workload and subjective workload because there were no clear criteria of objective workload assessment. And the subjective workload assessment is performed by NASA-TLX (NASA Task Load Index) which includes six evaluation dimensions of subjective workload. NASA-TLX is difficult to grasp the other aspects that could influence on the subjective workload because the analysis relies on predetermined assessment items. We conduct a factor analysis between the factors that affect the workload and the assessment adopted from ISO 10075 and NASA-TLX. At the same time, this study suggests other evaluation elements which can be added for subjective workload assessment except for evaluation elements of NASA-TLX.

Development of Macro-Porous Silicon Based Dye-Sensitized Solar Cells with Improved Light Trapping

  • Aliaghayee, Mehdi;Fard, Hassan Ghafoori;Zandi, Ashkan
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.218-227
    • /
    • 2016
  • The light harvesting efficiency is counted as an important factor in the power conversion efficiency of DSSCs. There are two measures to improve this parameter, including enhancing the dye-loading capacity and increasing the light trapping in the photoanode structure. In this paper, these tasks are addressed by introducing a macro-porous silicon (PSi) substrate as photoanode. The effects of the novel photoanode structure on the DSSC performance have been investigated by using energy dispersive X-ray spectroscopy, photocurrent-voltage, UV-visible spectroscopy, reflectance spectroscopy, and electrochemical impedance spectroscopy measurements. The results indicated that bigger porosity percentage of the PSi structure improved the both anti-reflective/light-trapping and dye-loading capacity properties. PSi based DSSCs own higher power conversion efficiency due to its remarkable higher photocurrent, open circuit voltage, and fill factor. Percent porosity of 64%, PSi(III), resulted in nearly 50 percent increment in power conversion efficiency compared with conventional DSSC. This paper showed that PSi can be a good candidate for the improvement of light harvesting efficiency in DSSCs. Furthermore, this study can be considered a valuable reference for more investigations in the design of multifunctional devices which will profit from integrated on-chip solar power.

High Efficiency AC-DC Converter Using Average-Current Mode Flyback Topology for PDP and Improvement of Hold-up Characteristic (평균전류모드 플라이백 토폴로지를 이용한 PDP용 고효율 AC-DC 컨버터 및 Hold-up 특성 개선)

  • Lee, Kyung-In;Lim, Seung-Beom;Jung, Yong-Min;Oh, Eun-Tae;Lee, Jun-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.23-27
    • /
    • 2008
  • Recently, regulation for THD (Total Harmonic Distortion) such as IEC 61000-3-2, IEEE 519 is being reinforced about a product which directly connects to AC line in order to prevent distortion of common power source in electronic equipment and electrical machinery. In order to satisfy these regulations, conventional circuits were used two-stage structure attached power factor correction circuit at ahead of converter but this method complicate the circuit and then a number of element increases thereupon the cost of production rises. in this paper, we propose a high efficiency single-stage 300W PFC fly-back converter that improved power factor and efficiency than conventional two-stage power module.

  • PDF

Improvement of Automatic control system for midnight power to operate effectively (심야전력의 효율적 운영을 위한 공급시간 자동제어시스템의 개선)

  • Moon, S.;Choi, K.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.846-848
    • /
    • 2005
  • Midnight electrical power appliance has come into a wide use due to the midnight power rate system introduced for effective power operation and an improved load factor. However, the sharply increased number of the appliance has brought about a serious problem in midnight power supply for the past few years. Moreover, the automatic control device, developed to address the problem, has not properly functioned because of the misusage and illegal conversion of the device. This paper will suggest solutions to the problem by improving the automatic control system for supply time (ACST) and demonstrate its effectiveness through tests.

  • PDF

Steady state Operatong Characteristics (PWM Buck-Boost AC-AC 컨버터의 정상상태 동작특성)

  • 최남섭
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.430-434
    • /
    • 2002
  • Recently, lot of researchers pay attention to custom power equipments for power quality improvement, especially, voltage stabilization equipment using PWM AC-AC converter. In this paper, voltage regulation system with PWM Buck-Boost AC-AC converter is proposed and then the system is modelled and analyzed by using of Circuit DQ transformation whereby steady state characteristics such as equations for voltage gain and power factor are obtained. The equations become guide line for system design by showing the effect on system operations. Finally, some experiment will show validity of analysis.

  • PDF